Blog Archives

Partial Optimizations with Gaussian09

Sometimes you just need to optimize some fragment or moiety of your molecule for a number of reasons -whether because of its size, your current interest, or to skew the progress of a previous optimization- or maybe you want just some kind of atoms to have their positions optimized. I usually optimize hydrogen atoms when working with crystallographic files but that for some reason I want to preserve the rest of the molecule as refined, in order to keep it under a crystalline field of sorts.
Asking Gaussian to optimize some of the atoms in your molecule requires you to make a list albeit the logic behind it is not quite straightforward to me. This list is invoked by the ReadOptimize keyword in the route section and it includes all atoms by default, you can then further tell G09 which atoms are to be included or excluded from the optimization.
So, for example you want to optimize all atoms EXCEPT hydrogens, then your input should bear the ReadOptimize keyword in the route section and then, at the end of the molecule specification, the following line:

atoms notatoms=H

If you wish to selectively add some atoms to the list while excluding others, here’s an example:

atoms=C H S notatoms=5-8

This list adds, and therefore optimizes, all carbon, hydrogen and sulfur atoms, except atoms 5, 6, 7 and 8, should they be any of the previous elements in the C H S list.
The way I selectively optimize hydrogen atoms is by erasing all atoms from the list -using the noatoms instruction- and then selecting which are to be included in the list -with atoms=H-, but I haven’t tried it with only selecting hydrogen atoms from the start, as in atoms=H

noatoms atoms=H

I probably get very confused because I learned to do this with the now obsolete ReadFreeze keyword; now it sometimes may seem to me like I’m using double negatives or something – please do not optimize all atoms except if they are hydrogen atoms. You can include numbers, ranks or symbols in this list as a final line of your input file.

Common errors (by common I mean I’ve got them):

Lets look at the end of an input I just was working with:

>  AtmSel:  Line=”P  0″
>  Maximum list size exceeded in AddBin.
>  Error termination via Lnk1e in…

AtmSel is the routine which reads the atoms list and I was using a pseudopotential on phosphorous atoms, I placed the atoms list at the end of the file but it should be placed right after the coordinates and the connectivity matrix, should there be one, and thus before any external basis set or pseudopotential or any other specification to be read by Gaussian.

As a sort of test you can use the instruction:

%kjob l103

at the Link0 section (where your checkpoint is defined). This will kill the job after the link 103 is finished, thus you will only get a list of what parameters were frozen and which were active. Then, if things look ok, you can run the job without the %kjob l103 instruction and get it done.

As usual I hope this helps. Thanks for reading except to those who didn’t read it except for the parts they did read.

Simulation of Raman Spectroscopy and crystal cell effects – Selenium Carboxylate Eur. J. Inorg. Chem.

Computing spectroscopic features of molecules is always an interesting challenge, specially when intermolecular contacts are into play. Take vibrational spectroscopy for instance, all the non-covalent interactions present in a solid will have an important effect on the the calculated frequencies and their intensities. However calculating the spectroscopical properties of a solid quickly becomes a daunting task.

My colleague and friend Dr. Vojtech Jancik asked me to calculate the Raman frequencies for a new compound: Selenoyl bis-carboxylate, which according to him was very hard to obtain due to the very nature of selenium. So we performed various calculations on the isolated molecule to reproduce the measured Raman spectrum but we soon realized that a calculation on the crystal cell was needed if we wanted to get a more thorough picture of the experiment.

The level of theory used was PBEPBE/LANL2DZ. Optimization of the title structure pointed to a low coordination capacity by carboxylate groups as evidenced by the longer Se -O-C=O distances and reduced Wiberg bond indexes. A blue shift was observed for all bands and so we calculated the Raman frequencies at the crystal structure which gave us a better correspondence between spectra. Finally we computed the Raman spectra for the full unit cell comprised of four molecules with which an excellent agreement was obtained (a scaling factor of 0.8 was used).

Unfortunately we failed to further extend this calculation to a larger system with four unit cells and 32 molecules apparently due to insufficient memory; the calculation just stalled and stopped without error after consuming its time in the queue. I’ll try to take a look into it some day.

You can read the whole story in: Synthesis and Crystal Structure of the First Selenonyl Bis(carboxylate) SeO2(O2CCH3)2
Lukas Richtera · Vojtech Jancik · Joaquín Barroso‐Flores · Petr Nykel · Jiri Touzin · Jan Taraba

European Journal of Inorganic Chemistry 06/2015; 2015(18):2923–2927. DOI:10.1002/ejic.201500271

Thanks for reading!

Efficient use of the clipboard on GaussView

Editing large molecules on a seemingly simple visualizer as GaussView can be a bit daunting. I’m working on a follow up of that project we recently published in JACS but now we require to attach two macrocycles to the organometallic moiety; the only caveat is that this time we don’t have any crystallographic data with which to start. Generating a 3D model of this structure is already hard enough and even when you managed to do it there are many degrees of freedom that in some cases can lead to unrealistic geometries after optimization.

I recently came across a simple way to edit a large complicated molecule by optimizing the fragments separately and then joining them in a new molecule by using the clipboard. This rather simple method, that I for one had never exploited has just saved me a few good hours.

Copy a molecule (CTRL+C) and it will go to the clipboard as a molecular fragment for which you can define a new hot atom and thus bind it to the other fragment as you would with the regular builder. I strongly suggest to use a “New Molecule Group” instead of editing over an existing molecule. Also, if you are using the “paste” button, observe that it has three different options; you may want to use the last one “append to existing molecule” or you will have your fragments in different windows.

And remember, dihedral angles are your best friends.

Atoms in Molecules (QTAIM) – Flash lesson

As far as population analysis methods goes, the Quantum Theory of Atoms in Molecules (QTAIM) a.k.a Atoms in Molecules (AIM) has become a popular option for defining atomic properties in molecular systems, however, its calculation is a bit tricky and maybe not as straightforward as Mulliken’s or NBO.

Personally I find AIM a philosophical question since, after the introduction of the molecule concept by Stanislao Cannizzaro in 1860 (although previously developed by Amadeo Avogadro who was dead at the time of the Karlsruhe congress), the questions of whether or not an atom retains its identity when bound to others? where does an atom end and the next begins? What are the connections between atoms in a molecule? are truly interesting and far deeper than we usually consider because it takes a big mental leap to think about how matter is organized to give rise to substances. Particularly I’m very interested with the concept of a Molecular Graph which in turn is concerned with the way we “draw lines” to form conceptual molecules. Perhaps in a different post we can go into the detail of the method, which is based in the Laplacian operator of the electron density, but today, I just want to collect the basic steps in getting the most basic AIM answers for any given molecule. Recently, my good friend Pezhman Zarabadi-Poor and I have used rather extensively the following procedure. We hope to have a couple of manuscripts published later on. Therefore, I’ve asked Pezhman to write a sort of guest post on how to run AIMALL, which is our selected program for the integration algorithm.

The first thing we need is a WFN or WFX file, which contains the wavefunction in a Fortran unformatted file on which the Laplacian integration is to be performed. This is achieved in Gaussian09 by incluiding the keyword output=wfn or output=wfx in the route section and adding a name for this file at the bottom line of the input file, e.g.


(NOTE: WFX is an eXtended version of  WFN; particularly necessary when using pseudopotentials or ECP’s)

Analyzing this file requires the use of a third party software such as AIMALL suite of programs, of which the standard version is free of charge upon registration to their website.

OpenAIMStudio (the accompanying graphical interface) and select the AIMQB program from the run menu as shown in figure 1.


Figure 1

Figure 1

Select your WFN/WFX file on which the calculation is to be run. (Figure 2)


Figure 2

Figure 2

You can control several options for the integration of the Laplacian of the electron density as well as other features. If your molecules are simple enough, you may go through with a successful and meaningful calculation using the default settings. After the calculation is finished, several result files are obtained. We’ll work in this tutorial only with *.mpgviz (which contains information about the molecular graph, MG) and *.sum (which contains all of  needed numerical data).

Visualization of the MG yields different kinds of critical points, such as: 1) Nuclear Attractor Critical Points (NACP); 2) Bond Critical Points (BCP); 3) Ring CP’s (RCP); and 4) Cage CP’s (CCP).

Of the above, BCP are the ones that indicate the presence of a chemical bond between two atoms, although this conclusion is not without controversy as pointed out by Foroutan-Njead in his paper: C. Foroutan-Nejad, S. Shahbazian and R. Marek, Chemistry – A European Journal, 2014, 20, 10140-10152. However, at a first approximation, BCP’s can help us to explore chemical interactions.

Now, let’s go back to visualizing those MGs (in our examples we’ve used methane and ethylene and acetylene). We open the corresponding *.mpgviz file in AIMStudio and export the image from the file menu and using the save as picture option (figure 3).

Figure 3

Figure 3

The labeled atoms are NACP’s while the green dots correspond to BCP’s. Multiplicity of a bond cannot be discerned within the MG; in order to find out whether a bond is a single, double or triple bond we have to look into the *.sum file, in which we’ll take a look at the bond orders between pairs of atoms in the section labeled “Diatomic Electron Pair Contributions and Delocalization Data” (Figure 4).

Figure 4

Figure 4

Delocalization indexes, DI’s, show the approximate number of electrons shared between two atoms. From the above examples we get the following DI(C,C) values: 1.93 for C2H4 and 2.87 for C2H2; on the other hand, DI(C,H) values are  0.98 for CH4, 0.97 in C2H4 and 0.96 in C2H2. These are our usual bond orders.

This is the first part of a crash tutorial on AIM, in my opinion this is the very basics anyone needs to get started with this interesting and widespread method. Thanks to all who asked about QTAIM, now you have your long answer.

Thanks a lot to my good friend Dr Pezhman Zarabadi-Poor for providing this contribution to the blog, we hope you all find it helpful. Please share and comment.

If a .fchk file wont open in GaussView5.0

I’ve found the following error regarding the opening of .fchk files in GaussView5.0.

Missing or bad data: Alpha Orbital Energies
Line Number 1234

The error is prevented to a first approximation (i.e. it at least will allow GV to open and visualize the file but other issues may arise) by opening the file and modifying the number of basis functions to equal the number of independent functions (which is lower)

FOpt RM062X 6-311++G(d,p) 
Number of atoms I 75
Info1-9 I N= 9
 163 163 0 0 0 110
 2 18 -502
Charge I 0
Multiplicity I 1
Number of electrons I 314
Number of alpha electrons I 157
Number of beta electrons I 157
Number of basis functions I 1199
Number of independent functions I 1199
Number of point charges in /Mol/ I 0
Number of translation vectors I 0
Atomic numbers I N= 75
... ...
... ...

Once both numbers match you can open the file normally and work with it. My guess is this will continue to happen with highly polarized basis sets but I need to run some tests.

Transition State Search (QST2 & QST3) and IRC with Gaussian09

Theoretical evaluation of a reaction mechanism is all about finding the right transition states (TS) but there are no guarantees within the available methods to actually find the one we need. Chemical intuition in the proposal of a mechanism is paramount. Let’s remember that a TS is a critical point on a Potential Energy Surface (PES) that is a minimum in every dimension but one. For a PES with more than two degrees of freedom, a hyper-surface, envisioning the location of a TS is a bit tricky, in the case of a three dimensional PES (two degrees of freedom) the saddle point constitutes the location of the TS as depicted in figure 1 by a section of a revolution hyperboloid.


Fig1. Saddle point on a surface (min in one direction; max in the other)

Fig 1a Pringles chips -Yuck-. They exhibit a maximum on the direction parallel to the screen and a minimum on the direction perpendicular to the screen at the same point.

Fig 1a Pringles chips -Yuck-. They exhibit a maximum on the direction parallel to the screen and a minimum on the direction perpendicular to the screen at the same point.

The following procedure considers gas phase calculations. Nevertheless, the use of the SCRF keyword activates the implicit solvent calculation of choice in order to evaluate to some degree the solvent influence on the reaction energetics at different temperatures with the use of the temperature keyword.

The first step consists of a high level optimization of all minimums involved, such as reagents, products and intermediates, with a subsequent frequency analysis that includes no imaginary eigenvalues.

In order to find the structures of the transition states we use in Gaussian the Synchronous Transit-guided Quasi-Newton method [1] through the keywords QST2 or QST3. In the former case, coordinates for the reagents and products are needed as input; for the latter keyword, coordinates for the TS structure guess is needed also.



#p opt=(qst2,redundant) m062x/6-31++G(d,p) freq=noraman Temperature=373.15 SCRF=(Solvent=Water)

Title card for reagents

Cartesian Coordinates for reagents
blank line
Title card for products

Cartesian Coordinates for products
blank line



#p opt=(qst3,redundant) m062x/6-31++G(d,p) freq=noraman Temperature=373.15 SCRF=(Solvent=Water)

Title Card for reagents

Cartesian Coordinates for reagents
blank line
Title card for products

Cartesian Coordinates for products
blank line–
Title card for TS
Cartesian Coordinates for TS
blank line

NOTE: It is fundamental that the numbering order is kept constant throughout the molecular specifications of all two, or three, input structures. Hence, I recommend to build a set of molecules, save their structure, and then modified the coordinates on the same file to produce the following structure, that way the number for every atom will remain the same for every step.

As I wrote above, there are no guarantees of finding the right TS so many attempts are probably needed. Once we have the optimized structures for all the species involved in our mechanistic proposal we can plot their energies very simply with MS Excel the way we’ve previously described in this blog (reblogged from

Once we’ve succeeded in finding the structure of our TS we may run an Internal Reaction Coordinate (IRC) calculation. This calculation will connect the TS structure to those of the products and the reagents. Initial constant forces are required and these are commonly retrieved from the TS calculation checkpoint file through the RCFC keyword.


#p m062x/6-31++G(d,p) IRC=(Maxpoints=50,RCFC,phase=(2,1))Temperature=373.15 SCRF=(Solvent=Water) geom=allcheck

Title Card

blank line

Finally, the IRC path can be visualized with GaussView from the Results menu. A successful IRC will link both structures along a single reaction coordinate proving that both reagents and products are linked by the obtained TS.

Hat tip to Howard Diaz who has become quite skillful in calculating these mechanisms as proven by his recent poster at the XII RMFQT a couple of weeks back. And as usual thanks to everyone who reads, comments, likes, recommends, rates and shares my silly little posts.

XIIth Mexican Reunion on Theoretical Physical Chemistry

As every year this month we had the yearly Mexican Reunion on Theoretical Physical Chemistry organized by prominent researchers in the field, such as Dr. Emilio Orgaz (UNAM), Dr. Alberto Vela (CINVESTAV) and many other. Over 150 different works were presented during this edition which took place in Juriquilla, Querétaro at one of the many campuses of the National Autonomous University of Mexico scattered all around the country. Below you can see some pictures from the talks and the first poster session.


This time we contributed with a small poster on a mechanism proposed by Howard Diaz (an undergrad student from UAEM) on the equilibrium transformation of dihydrocinolines into 1-amino-indoles by an intramolecular rearrangement. May this post also serve as the starting point of a -mini-tutorial on how to evaluate a mechanism theoretically using QST3 and IRC in implicitly solvated environments (PCM)


Howard Diaz posing next to his poster

The equilibrium under study and the proposed mechanism  by which it occurs, originally proposed by Frontana-Uribe et al. looks a bit like this:


Dihydrocinolines in equilibrium with 1-aminoindole


Mechanistic proposal by Frontana-Uribe et al.

The energy profile, in which all transition states were calculated with the QST3 method, is presented below, calculated at various levels of theory. Also, the Internal Reaction Coordinate (IRC) connecting both states was calculated and is shown further below in the full poster.

Energy Profile

Energy Profile

From this results we believe that a new mechanistic proposal is needed since the energy barrier for the first step is quite high (~60 kcal/mol) and hence a bit unlikely to occur through that transition state. Nevertheless this is a first approach to elucidating a mechanism and the more knowledge about it the higher the control will be on this chemical transformation.

A full version of the poster is shown below for your convenience (Spanish). See you all at the next RMFQT in Morelia 2014!

Full Poster

Full Poster

Natural Bond Orbitals (NBO) Visualization with Chemcraft

It’s been a long time since I last posted something and so many things have happened in our research group! I should catch up with them in short but times have just been quite hectic.

I’m glad to publicly thank Prof. Frank Weinhold’s gesture to include this blog in the bibliography section of the new NBO6.0 website under the NBO-Related Websites tab.

Here is a contribution from Igor Marques at the University of Aveiro in Portugal (Group Website); the original text can be found as a comment in the original NBO Visualization post but it is pretty much the same thing you can find in this post. Here is a link to Chemcraft’s website. Thanks for sharing this, Igor!

=> Examples provided by Igor Marques used Chemcraft Version 1.7, build 365 <=

In the Gaussian input, with the NBORead option included under the population keyword, we should include the PLOT option as illustrated below. The gfoldprint keyword will print the basis set to the output file in the old G03 format. Some visualization programs require a certain format of the basis set to be printed to the output file in order to plot orbitals and other surfaces like the electron density; therefore, if you want to play safe, use gfoldprint, gfprint and gfinput in the same line. gfprint will print the basis set as a list but in the new G09 format, whereas gfinput will print the basis set using Gaussian’s own input format. (The used level of theory and number of shared processors are shown as illustrations only; also the Opt keyword is not fundamental to the visualization of the NBO’s)


#P b3lyp/6-311++g** Opt pop=(full,nboread) gfoldprint 

0 1
molecular coordinates

this will generate files from *.31 to *.41
For the visualization of NBOs, you’ll need FILE.31 and FILE.37. Open FILE.31 from chemcraft. It will automatically detect FILE.37 (if in the same directory).

Tools > Orbitals > Render molecular orbitals

select the NBOs of interest (whcih are in the same order of the output),

Adjust settings > OK

On the left side of the window, select the NBO of interest and then click on ‘show isosurface’. Adjust the remaining settings. To represent another orbital, click on ‘keep this surface’ and then select another orbital from the rendered set and follow the previous steps.

Some Considerations:

> It’s possible to open a formated checkpoint file, containing the NBOs, in chemcraft.
Gaussian input:

#P b3lyp/6-311++g** Opt pop=(full,nboread,savenbo) gfoldprint 

0 1
molecular coordinates

the procedure is identical, but it is only necessary to read the *fchk file and then render the desired orbitals.
However, two problems might arise:
a) Orbitals in the checkpoint are reordered, thus requiring some careful inspection of the output.
b) Sometimes, for a larger molecule, the checkpoint might not be properly saved and the Gaussian job (as previously reported – ) will end with:

Failed in SchOr1 in NBStor.
Error termination via Lnk1e in /data/programs/g09/l607.exe at Wed Mar 6 15:27:33 2013.


As usual, thanks to all for reading/commenting/rating this and other posts in this blog!

Delta G of solvation in Gaussian09

How to calculate the Delta G of solvation? This is a question that I get a lot in this blog, so it is about time I wrote a (mini)post on it, and at the same time put an end to this posting drought which has lasted for quite a few months due to a lot of pending work with which I’ve had to catch up. Therefore, this is another post in the series of SCRF calculations that are so popular in this blog. For the other posts on this subjects remember to click here and here.


SMD is the keyword you want to use when performing a Self Consistent Reaction Field (SCRF) calculation with G09. This keyword was only made available in this last version of the program and it corresponds to Truhlar’s and coworkers solvation model which is recommended by Gaussian itself as the preferred model to calculate Delta G of solvation. The syntax used is the standard way used in any other Gaussian input files as follows:

# 'route section keywords' SCRF=SMD

Separately, we must either perform a gas phase calculation or use the DoVacuum keyword within the same SCRF input, and then take the energy difference between gas phase and solvated models.

# 'route section keywords' SCRF=(SMD,DoVacuum)

No solvation or cavity model should be defined since, by definition, SMD will use the IEFPCM model which is a synonym for PCM.

As opposed to the previous versions of Gaussian, the output energy already contains all corrections, this is why we must take the difference between both values (remember to calculate them both at the same level of theory if calculated separately!). Nevertheless, when using the SMD keyword we get a separate line, just below the energy, stating the SMD-CDS non electrostatic value in kCal/mol.

The radii were also defined in the original paper by Truhlar; I’m not sure if using the keyword RADII with any of its options yields a different result or if it even ends in an error. Its worth the try!

Some calculation variations are not available when using SMD, such as Dis (calculation of the solute-solvent dispersion interaction energy), Rep (solute-solvent repulsion interaction energy) and Cav (inclusion of the solute cavitation energy in the total energy). I guess the reason for this might be that the SMD model is highly parametrized.

Have you found any issue with any item listed above? Pleases share your thoughts in the comments section below. As usual I hope this post was useful and that you all rate it, like it and comment.


A. V. Marenich, C. J. Cramer, and D. G. Truhlar, “Universal solvation model based on solute electron density and a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions,” J. Phys. Chem. B, 113 (2009) 6378-96.


This is the first time I reblog a post from a fellow computational chemist and the reason why I do it is because of its beautiful simplicity and usefulness. Given the scope this blog has taken I think this post becomes most appropriate. This post will show you how to create an energy level diagram using nothing but MS Excel.
Kudos to ‘Eutactic’, from Australia, for coming up with a nice solution to this problem. Check out his blog at
Thanks for letting me repost it :)

Originally posted on eutactic:

I worked out a very quick and easy way to generate level schemes in Excel, based on a query from one of the other students in the group. Normally I would resort to something like the astonishing TikZ for this sort of task, however our group is very much a Microsoft Office ‘What You See Is A Metaphor For Cosmic Horror‘ group and recommending that a colleague learns two new markup languages to produce a figure is probably not helpful in the short term. One of the issues with charting energy levels in Excel is that levels are typically represented by horizontal bars connected at their vertices with lines representing transitions. Whilst Excel does have a horizontal bar as a marker, it possesses two show-stopping limitations:

  1. It is only uniformly scalable, and can only be scaled so far – we cannot make it anywhere near wide and…

View original 222 more words


Get every new post delivered to your Inbox.

Join 1,619 other followers

%d bloggers like this: