Monthly Archives: July 2017

No, seriously, why can’t orbitals be observed?

The concept of electronic orbital has become such a useful and engraved tool in understanding chemical structure and reactivity that it has almost become one of those things whose original meaning has been lost and replaced for a utilitarian concept, one which is not bad in itself but that may lead to some wrong conclusions when certain fundamental facts are overlooked.

Last week a wrote -what I thought was- a humorous post on this topic because a couple of weeks ago a viewpoint in JPC-A was published by Pham and Gordon on the possibility of observing molecular orbitals through microscopy methods, which elicited a ‘seriously? again?‘ reaction from me, since I distinctly remember the Nature article by Zuo from the year 2000 when I just had entered graduate school. The article is titled “direct observation of d-orbital holes.” We discussed this paper in class and the discussion it prompted was very interesting at various levels: for starters, the allegedly observed d-orbital was strikingly similar to a dz2, which we had learned in class (thanks, prof. Carlos Amador!) that is actually a linear combination of d(z2-x2) and d(z2-y2) orbitals, a mathematical -lets say- trick to conform to spectroscopic observations.

Pham and Gordon are pretty clear in their first paragraph: “The wave function amplitude Ψ*Ψ is interpreted as the probability density. All observable atomic or molecular properties are determined by the probability and a corresponding quantum mechanical operator, not by the wave function itself. Wave functions, even exact wave functions, are not observables.” There is even another problem, about which I wrote a post long time ago: orbitals are non-unique, this means that I could get a set of orbitals by solving the Schrödinger equation for any given molecule and then perform a unit transformation on them (such as renormalizing them, re-orthonormalizing them to get a localized version, or even hybridizing them) and the electronic density derived from them would be the same! In quantum mechanical terms this means that the probability density associated with the wave function internal product, Ψ*Ψ, is not changed upon unit transformations; why then would a specific version be “observed” under a microscope? As Pham and Gordon state more eloquently it has to do with the Density of States (DOS) rather than with the orbitals. Furthermore, an orbital, or more precisely a spinorbital, is conveniently (in math terms) separated into a radial, an angular and a spin component R(r)Ylm(θ,φ)σ(α,β) with the angular part given by the spherical harmonic functions Ylm(θ,φ), which in turn -when plotted in spherical coordinates- create the famous lobes we all chemists know and love. Zuo’s observation claim was based on the resemblance of the observed density to the angular part of an atomic orbital. Another thing, orbitals have phases, no experimental observation claims to have resolved those.

Now, I may be entering a dangerous comparison but, can you observe a 2? If you say you just did, well, that “2” is just a symbol used to represent a quantity: two, the cardinality of a set containing two elements. You might as well depict such quantity as “II” or “⋅⋅” but still cannot observe “a two”. (If any mathematician is reading this, please, be gentle.) I know a number and a function are different, sorry if I’m just rambling here and overextending a metaphor.

Pretending to having observed an orbital through direct experimental methods is to neglect the Born interpretation of the wave function, Heisenberg’s uncertainty principle and even Schrödinger’s cat! (I know, I know, Schrödinger came up with this gedankenexperiment in order to refute the Copenhagen interpretation of quantum mechanics, but it seems like after all the cat is still not out of the box!)

So, the take home message from the viewpoint in JPC is that molecular properties are defined by the expected values of a given wave function for a specific quantum mechanical operator of the property under investigation and not from the wave function itself. Wave functions are not observables and although some imaging techniques seem to accomplish a formidable task the physical impossibility hints to a misinterpretation of facts.

I think I’ll write more about this in a future post but for now, my take home message is to keep in mind that orbitals are wave functions and therefore are not more observable (as in imaging) than a partition function is in statistical mechanics.

#CompChem – Can Orbitals Be Directly Observed?


The Gossip Approach to Scientific Writing

Communication of scientific findings is an essential skill for any scientist, yet it’s one of those things some students are reluctant to do partially because of the infamous blank page scare. Once they are confronted to writing their thesis or papers they make some common mistakes like for instance not thinking who their audience is or not adhering to the main points. One of the the highest form of communication, believe it or not, is gossip, because gossip goes straight to the point, is juicy (i.e. interesting) and seldom needs contextualization i.e. you deliver it just to the right audience (that’s why gossiping about friends to your relatives is almost never fun) and you do it at the right time (that’s the difference between gossips and anecdotes). Therefore, I tell my students to write as if they were gossiping; treat your research in a good narrative way, because a poor narrative can make your results be overlooked.

I’ve read too many theses in which conclusions are about how well the methods work, and unless your thesis has to do with developing a new method, that is a terrible mistake. Methods work well, that is why they are established methods.

Take the following example for a piece of gossip: Say you are in a committed monogamous relationship and you have the feeling your significant other is cheating on you. This is your hypothesis. This hypothesis is supported by their strange behavior, that would be the evidence supporting your hypothesis; but be careful because there could also be anecdotal evidence which isn’t significant to your own as in the spouse of a friend had this behavior when cheating ergo mine is cheating too. The use of anecdotal evidence to support a hypothesis should be avoided like the plague. Then, you need an experimental setup to prove, or even better disprove, your hypothesis. To that end you could hack into your better half’s email, have them followed either by yourself or a third party, confronting their friends, snooping their phone, just basically about anything that might give you some information. This is the core of your research: your data. But data is meaningless without a conclusion, some people think data should speak for itself and let each reader come up with their own conclusions so they don’t get biased by your own vision and while there is some truth to that, your data makes sense in a context that you helped develop so providing your own conclusions is needed or we aren’t scientists but stamp collectors.

This is when most students make a terrible mistake because here is where gossip skills come in handy: When asked by friends (peers) what was it that you found out, most students will try to convince them that they knew the best algorithms for hacking a phone or that they were super conspicuous when following their partners or even how important was the new method for installing a third party app on their phones to have a text message sent every time their phone when outside a certain area, and yeah, by the way, I found them in bed together. Ultimately their question is left unanswered and the true conclusion lies buried in a lengthy boring description of the work performed; remember, you performed all that work to reach an ultimate goal not just for the sake of performing it.

Writers say that every sentence in a book should either move the story forward or show character; in the same way, every section of your scientific written piece should help make the point of your research, keep the why and the what distinct from the how, and don’t be afraid about treating your research as the best piece of gossip you’ve had in years because if you are a science student it is.


%d bloggers like this: