Category Archives: Articles

Stability of Unnatural DNA – @PCCP #CompChem


As is the case of proteins, the functioning of DNA is highly dependent on its 3D structure and not just only on its sequence but the difference is that protein tertiary structure has an enormous variety whereas DNA is (almost) always a double helix with little variations. The canonical base pairs AT, CG stabilize the famous double helix but the same cannot be guaranteed when non-canonical -unnatural- base pairs (UBPs) are introduced.

Imagen1

Figure 1

When I first took a look at Romesberg’s UBPS, d5SICS and dNaM (throughout the study referred to as X and Y see Fig.1) it was evident that they could not form hydrogen bonds, in the end they’re substituted naphtalenes with no discernible ways of creating a synton like their natural counterparts. That’s when I called Dr. Rodrigo Galindo at Utah University who is one of the developers of the AMBER code and who is very knowledgeable on matters of DNA structure and dynamics; he immediately got on board and soon enough we were launching molecular dynamics simulations and quantum mechanical calculations. That was more than two years ago.

Our latest paper in Phys.Chem.Chem.Phys. deals with the dynamical and structural stability of a DNA strand in which Romesberg’s UBPs are introduced sequentially one pair at a time into Dickerson’s dodecamer (a palindromic sequence) from the Protein Data Bank. Therein d5SICS-dNaM pair were inserted right in the middle forming a trisdecamer; as expected, +10 microseconds molecular dynamics simulations exhibited the same stability as the control dodecamer (Fig.2 left). We didn’t need to go far enough into the substitutions to get the double helix to go awry within a couple of microseconds: Three non-consecutive inclusions of UBPs were enough to get a less regular structure (Fig. 2 right); with five, a globular structure was obtained for which is not possible to get a proper average of the most populated structures.

X and Y don’t form hydrogen bonds so the pairing is pretty much forced by the scaffold of the rest of the DNA’s double helix. There are some controversies as to how X and Y fit together, whether they overlap or just wedge between each other and according to our results, the pairing suggests that a C1-C1′ distance of 11 Å is most stable consistent with the wedging conformation. Still much work is needed to understand the pairing between X and Y and even more so to get a pair of useful UBPs. More papers on this topic in the near future.

I’m putting a new blog out there


As if I didn’t have enough things to do I’m launching a new blog inspired by the #365papers hashtag on Twitter and the naturalproductman.wordpress.com blog. In it I’ll hopefully list, write a femto-review of all the papers I read. This new effort is even more daunting than the actual reading of the huge digital pile of papers I have in my Mendeley To-Be-Read folder, the fattest of them all. The papers therein wont be a comprehensive review of Comp.Chem. must-read papers but rather papers relevant to our lab’s research or curiosity.

Maybe I’ll include some papers brought to my attention by the group and they could do the review. The whole endeavor might flop in a few weeks but I want to give it a shot; we’ll see how it mutates and if it survives or not. So far I haven’t managed to review all papers read but maybe this post will prompt to do so if only to save some face. The domain of the new blog is compchemdigest.wordpress.com but I think it should have included the word MY at the beginning so as to convey the idea that it is only my own biased reading list. Anyway, if you’re interested share it and subscribe, those post will not be publicized.

Unnatural DNA and Synthetic Biology


Ever since I read the highly praised article by Floyd Romesberg in Nature back in 2013 I got really interested in synthetic biology. In said article, an unnatural base pair (UBP) was not only inserted into a DNA double strand in vivo  but the organism was even able to reproduce the UBPs present in subsequent generations.

Imagen1

Romesberg’s Nucleosides. No Hydrogen bonding is formed between them!

Inserting new unnatural base pairs in DNA works a lot like editing a computer’s code. Inserting a couple UBPs in vitro is like inserting a comment; it wont make a difference but its still there. If the DNA sequence containing the UBPs can be amplified by molecular biology techniques such as PCR it means that a polymerase enzyme is able to recognize it and place it in site, this is equivalent to inserting a ‘hello world’ section into a working code; it will compile but it’s pretty much useless. Inserting these UBPs in vivo means that the organism is able to thrive despite the large deformation in a short section of its genetic code, but having it replicated by the chemical machinery of the nucleus is an amazing feat that only a few molecules could allow.

The ultimate goal of synthetic biology would be to find a UBP which codes effectively and purposefully during translation of DNA.This last feat would be equivalent to inserting a working subroutine in a program with a specific purpose. But not only could the use of UBPs serve for the purposes of expanding the genetic code from a quaternary (base four) to a senary (base six) system: the field of DNA origami could also benefit from having an expansion in the chemical and structural possibilities of the famous double helix; marking and editing a sequence would also become easier by having distinctive sections with nucleotides other than A, T, C and G.

It is precisely in the concept of double helix that our research takes place since the available biochemical machinery for translation and replication can only work on a double helix, else, the repair mechanisms get activated or the DNA will just stop serving its purpose (i.e. the code wont compile).

My good friend, Dr. Rodrigo Galindo and I have worked on the simulation of Romesberg’s UBPs in order to understand the underlying structural, dynamical and electronic causes that made them so successful and to possibly design more efficient UBPs based on a set of general principles. A first paper has been accepted for publication in Phys.Chem.Chem.Phys. and we’re very excited for it; more on that in a future post.

Tribology – New paper in JPC A


Tribology isn’t exactly an area with which us chemists are most familiar, yet chemistry has a great impact on this branch of physics of high industrial importance. Tribology is basically the science which studies the causes and consequences of friction between surfaces. 

The plastic bag industry requires the use of chemical additives to reduce the electrostatic adherence between sheets of plastic. My good old friend Dr. Armando Gama has studied through Dissipative Particle Dynamics (DPD) coarse-grained simulations the friction coefficients of having two slightly different molecules: erukamide and behenamide, which only differ in the presence of a double bond between carbon atoms 12 and 13 (Fig1).

picture1

Fig 1

In order to study the electronic aspects that give rise to different tribological effects in these very similar molecules, four chains of each kind were bounded to a frozen graphene surface (four bonds apart to prevent steric crowding) and were optimized at the B97D/6-31G(d,p) level of theory.

 

 

Double bonds in erukamide pile together through pi-pi stacking interactions (Fig2) which are absent in behenamide which is why these last ones are able to slide better between each other (Fig3). Interaction energies calculated for the inner chains at the same level of theory are 44.21 and 34.46 kcal/mol for erukamide and behenamide, respectively. As per the suggestion of a referee we extended the calculations to a 2D system by placing seven molecules on graphene, which once again was kept at the optimized geometry of its isolated state, at four bonds of separation in order to prevent steric crowding (Fig 4).

picture4

Fig 4

This calculations clearly represent a limit case with a high density covering of the surface, but they nevertheless reflect the observed trend that behenamide works better than erukamide in reducing the static friction coefficient between sheets.

The paper is now available at JPC-A. Thanks to Dr. Gama for this great opportunity to work with his team, I know it wont be the last.

New paper in Tetrahedron #CompChem “Why U don’t React?”


Literature in synthetic chemistry is full of reactions that do occur but very little or no attention is payed to those that do not proceed. The question here is what can we learn from reactions that are not taking place even when our chemical intuition tells us they’re feasible? Is there valuable knowledge that can be acquired by studying the ‘anti-driving force’ that inhibits a reaction? This is the focus of a new manuscript recently published by our research group in Tetrahedron (DOI: 10.1016/j.tet.2016.05.058) which was the basis of Guillermo Caballero’s BSc thesis.

fig1

 

It is well known in organic chemistry that if a molecular structure has the possibility to be aromatic it can somehow undergo an aromatization process to achieve this more stable state. During some experimental efforts Guillermo Caballero found two compounds that could be easily regarded as non-aromatic tautomers of a substituted pyridine but which were not transformed into the aromatic compound by any means explored; whether by treatment with strong bases, or through thermal or photochemical reaction conditions.

fig2

These results led us to investigate the causes that inhibits these aromatization reactions to occur and here is where computational chemistry took over. As a first approach we proposed two plausible reaction mechanisms for the aromatization process and evaluated them with DFT transition state calculations at the M05-2x/6-31+G(d,p)//B3LYP/6-31+G(d,p) levels of theory. The results showed that despite the aromatic tautomers are indeed more stable than their corresponding non-aromatic ones, a high activation free energy is needed to reach the transition states. Thus, the barrier heights are the first reason why aromatization is being inhibited; there just isn’t enough thermal energy in the environment for the transformation to occur.

fig3

But this is only the proximal cause, we went then to search for the distal causes (i.e. the reasons behind the high energy of the barriers). The second part of the work was then the calculation of the delocalization energies and frontier molecular orbitals for the non-aromatic tautomers at the HF/cc-pVQZ level of theory to get insights for the large barrier heights. The energies showed a strong electron delocalization of the nitrogen’s lone pair to the oxygen atom in the carbonyl group. Such delocalization promoted the formation of an electron corridor formed with frontier and close-to-frontier molecular orbitals, resembling an extended push-pull effect. The hydrogen atoms that could promote the aromatization process are shown to be chemically inaccessible.

fig4

Further calculations for a series of analogous compounds showed that the dimethyl amino moiety plays a crucial role avoiding the aromatization process to occur. When this group was changed for a nitro group, theoretical calculations yielded a decrease in the barrier high, enough for the reaction to proceed. Electronically, the bonding electron corridor is interrupted due to a pull-pull effect that was assessed through the delocalization energies.

The identity of the compounds under study was assessed through 1H, 13C-NMR and 2D NMR experiments HMBC, HMQC so we had to dive head long into experimental techniques to back our calculations.

New Paper in JIPH – As(V)@calix[n]arenes


As part of an ongoing collaboration with the University of Arizona (UA) and the Center for Advanced Research and Studies (CINVESTAV – Saltillo), we are looking into the use of calix[n]arenes for bio-remediation agents capable to extract Arsenic (V) and (III) species from water. Water contamination by arsenic is a pressing issue in northern Mexico and the southern US, therefore any efforts aiming to their elimination has strong social and health repercussions.

As in previous studies, all calixarenes were optimized along with their corresponding guests within the cavity, namely H3AsO4, H2AsO4 and HAsO42- at the DFT level with the so-called Minnesota functionals by Truhlar and Cao, M06-2X/6-31G(d,p) level of theory. Interaction energies were calculated through the NBODel procedure. Calixarenes with R = SO3H and PO3H are the most promising leads. This study is now publishes in the Journal of Inclusion Phenomena and Macrocyclic Chemistry (DOI 10.1007/s10847-016-0617-0) as an online first article.

This article is also the first to be published by our undergraduate (and almost grad student in a month) Gustavo Mondragón who took this project on a side to his own research on photosynthesis.

Now my colleagues in Arizona and Saltillo, Prof. Reyes Sierra and Dr. Eddie López, respectively, will work on the experimental side of the project. Further calculations are being undertaken to extend this study to As(III) and to the use of other potential extracting materials such as metallic nanoparticles to which calixarenes could be covalently linked.

Simulation of Raman Spectroscopy and crystal cell effects – Selenium Carboxylate Eur. J. Inorg. Chem.


Computing spectroscopic features of molecules is always an interesting challenge, specially when intermolecular contacts are into play. Take vibrational spectroscopy for instance, all the non-covalent interactions present in a solid will have an important effect on the the calculated frequencies and their intensities. However calculating the spectroscopical properties of a solid quickly becomes a daunting task.

My colleague and friend Dr. Vojtech Jancik asked me to calculate the Raman frequencies for a new compound: Selenoyl bis-carboxylate, which according to him was very hard to obtain due to the very nature of selenium. So we performed various calculations on the isolated molecule to reproduce the measured Raman spectrum but we soon realized that a calculation on the crystal cell was needed if we wanted to get a more thorough picture of the experiment.

The level of theory used was PBEPBE/LANL2DZ. Optimization of the title structure pointed to a low coordination capacity by carboxylate groups as evidenced by the longer Se -O-C=O distances and reduced Wiberg bond indexes. A blue shift was observed for all bands and so we calculated the Raman frequencies at the crystal structure which gave us a better correspondence between spectra. Finally we computed the Raman spectra for the full unit cell comprised of four molecules with which an excellent agreement was obtained (a scaling factor of 0.8 was used).

Unfortunately we failed to further extend this calculation to a larger system with four unit cells and 32 molecules apparently due to insufficient memory; the calculation just stalled and stopped without error after consuming its time in the queue. I’ll try to take a look into it some day.

https://vine.co/v/eaQOH57nADO/embed/simple?audio=1https://platform.vine.co/static/scripts/embed.js

You can read the whole story in: Synthesis and Crystal Structure of the First Selenonyl Bis(carboxylate) SeO2(O2CCH3)2
Lukas Richtera · Vojtech Jancik · Joaquín Barroso‐Flores · Petr Nykel · Jiri Touzin · Jan Taraba

European Journal of Inorganic Chemistry 06/2015; 2015(18):2923–2927. DOI:10.1002/ejic.201500271
https://platform.vine.co/static/scripts/embed.js

Thanks for reading!

New paper in JPC-A


As we approach to the end of another year, and with that the time where my office becomes covered with post-it notes so as to find my way back into work after the holidays, we celebrate another paper published! This time at the Journal of Physical Chemistry A as a follow up to this other paper published last year on JPC-C. Back then we reported the development of a selective sensor for Hg(II); this sensor consisted on 1-amino-8-naphthol-3,6-disulphonic acid (H-Acid) covalently bound to a modified silica SBA-15 surface. H-Acid is fluorescent and we took advantage of the fact that, when in the presence of Hg(II) in aqueous media, its fluorescence is quenched but not with other ions, even with closely related ions such as Zn(II) and Cd(II). In this new report we delve into the electronic reasons behind the quenching process by calculating the most important electronic transitions with the framework laid by the Time Dependent Density Functional Theory (TD-DFT) at the PBE0/cc-pVQZ level of theory (we also included an electron core potential on the heavy metal atoms in order to decrease the time of each calculation). One of the things I personally liked about this work is the combination of different techniques that were used to assess the photochemical phenomenon at hand; some of those techniques included calculation of various bond orders (Mayer, Fuzzy, Wiberg, delocalization indexes), time dependent DFT and charge transfer delocalizations. Although we calculated all these various different descriptors to account for changes in the electronic structure of the ligand which lead to the fluorescence quenching, only delocalization indexes as calculated with QTAIM were used to draw conclusion, while the rest are collected in the SI section.

jpca

Thanks a lot to my good friend and collaborator Dr. Pezhman Zarabadi-Poor for all his work, interest and insight into the rationalization of this phenomenon. This is our second paper published together. By the way, if any of you readers is aware of a way to finance a postdoc stay for Pezhman here at our lab, please send us a message because right now funding is scarce and we’d love to keep bringing you many more interesting papers.

For our research group this was the fourth paper published during 2014. We can only hope (and work hard) to have at least five next year without compromising their quality. I’m setting the goal to be 6 papers; we’ll see in a year if we delivered or not.

I’d like to also take this opportunity to thank all the readers of this little blog of mine for your visits and your live demonstrations of appreciation at various local and global meetings such as the ACS meeting in San Francisco and WATOC14 in Chile, it means a lot to me to know that the things I write are read; if I were to make any New Year’s resolutions it would be to reply quicker to questions posted because if you took the time to write I should take the time to reply.

I wish you all the best for 2015 in and out of the lab!

New paper in JACS


Well, I only contributed with the theoretical section by doing electronic structure calculations, so it isn’t really a paper we can ascribe to this particular lab, however it is really nice to see my name in JACS along such a prominent researcher as Prof. Chad Mirkin from Northwestern University, in a work closely related to my area of research interest as macrocyclic recognition agents.

In this manuscript, a calix[4]arene is allosterically opened and closed reversibly by coordinating different kinds of ligands to a platinum center linked to the macrocycle. (This approach has been referred to as the weak link approach.) I recently visited Northwestern and had a great time with José Mendez-Arroyo, the first author, who showed me around and opened the possibility for further work between our research groups.

(Ligands: Green = Chloride; Blue = Cyanide)

Closed, semi-open and fully open conformations; selectivity is modulated through cavity size. (Ligands: Green = Chloride; Blue = Cyanide)

Here at UNAM we calculated the interaction energies for the two guests that were successfully inserted into the cavity: N-methyl-pyridinium (Eint = 57.4 kcal/mol) and Pyridine-N-oxide (Eint = +200.0 kcal/mol). Below you can see the electrostatic potential mapped onto the electron density isosurface for one of the adducts. Relative orientation of the hosts within the cavity follows the expected (anti-) alignment of mutual dipole moments. At this level of theory, we could easily be inclined to assert that the most stable interaction is indeed the one from the semi-open compound and that this in turn is due to the fact that host and guest are packed closer together but there is also an orbital issue: Pyridine Oxide is a better electron acceptor than N-Me-pyridinium and when we take a closer look to the (Natural Bonding) orbitals interacting it becomes evident that a closer location does not necessarily yields a stronger interaction when the electron accepting power of the ligand is weaker (which is, in my opinion, both logic and at the same time a bit counterintuitive, yet fascinating, nonetheless).

Electrostatic potential mapped onto the electron density surface of one of the aducts under study

Electrostatic potential mapped onto the electron density surface of one of the adducts under study

All calculations were performed at the B97D/LANL2DZ level of theory with the use of Gaussian09 and NBO3.1 as provided within the former. Computing time at UNAM’s supercomputer known as ‘Miztli‘ is fully acknowledged.

The full citation follows:

A Multi-State, Allosterically-Regulated Molecular Receptor With Switchable Selectivity
Jose Mendez-Arroyo Joaquín Barroso-Flores §,Alejo M. Lifschitz Amy A. Sarjeant Charlotte L. Stern , and Chad A. Mirkin *

J. Am. Chem. Soc., Article ASAP
DOI: 10.1021/ja503506a
Publication Date (Web): July 9, 2014

 Thanks to José Mendez-Arroyo for contacting me and giving me the opportunity to collaborate with his research; I’m sure this is the first of many joint projects that will mutually benefit our groups. 

 

New paper in Journal of Chemical Theory and Computation


Happy new year to all my readers!

Having a new paper published is always a matter of happiness for this computational chemist but this time I’m excedingly excited about anouncing the publishing of a paper in the Journal of Chemical Theory and Computation, which is my highest ranked publication so far! It also establishes the consolidation of our research group at CCIQS as a solid and competitive group within the field of theoretical and computational chemistry. The title of our paper is “In Silico design of monomolecular drug carriers for the tyrosine kinase inhibitor drug Imatinib based on calix- and thiacalix[n]arene host molecules. A DFT and Molecular Dynamics study“.

In this article we aimed towards finding a suitable (thia-) calix[n]arene based drug delivery agent for the drug Imatinib (Gleevec by Novartis), which is a broadly used powerful Tyrosine Kinase III inhibitor used in the treatment of Chronic Myeloid Leukaemia and, to a lesser extent, Gastrointestinal Stromal Tumors; although Imatinib (IMB) exhibits a bioavailability close to 90% most of it is excreted, becomes bound to serum proteins or gets accumulated in other tissues such as the heart causing several undesired side effects which ultimately limit its use. By using a molecular capsule we can increase the molecular weight of the drug thus increasing its retention, and at the same time we can prevent Imatinib to bind, in its active form, to undesired proteins.

We suggested 36 different calix and thia-calix[n]arenes (CX) as possible candidates; IMB-CX complexes were manually docked and then optimized at the B97D/6-31G(d,p) level of theory; Stephan Grimme’s B97D functional was selected for its inclusion of dispersion terms, so important in describing π-π interactions. Intermolecular interaction energies were calculated under the Natural Bond Order approximation; a stable complex was needed but a too stable complex would never deliver its drug payload! This brings us to the next part of the study. A monomolecular drug delivery agent must be able to form a stable complex with the drug but it must also be able to release it. Molecular Dynamics simulations (+100 ns) and umbrella sampling methods were used to analyse the release of the drug into the aqueous media.

Optimized geometries for all complexes under study (B97D/6-31G*)

Optimized geometries for the 20 most stable complexes under study (B97D/6-31G*)

Potential Mean Force profiles for the four most stable complexes for position N1 and  N2 from the QM simulations are shown below (Red, complexes in the N1 position, blue, N2 position). These plots, derived from the MD simulations  give us an idea of the final destination of the drug respect of the calixarene carrier. In the next image, the three preferred structures (rotaxane-like; inside; released) for the final outcome of the delivery process are shown. The stability of the complexes was also assessed by calculating the values of ΔG binding through the use of the Poisson equations.

PMF for the most stable compounds

PMF for the most stable compounds

General MD simulation final structures

General MD simulation final structures

Thanks to my co-authors Maria Eugenia Sandoval-Salinas and Dr. Rodrigo Galindo-Murillo for their enormous contributions to this work; without their hard work and commitment to the project this paper wouldn’t have been possible.

%d bloggers like this: