Category Archives: DFT

Estimation of pKa Values through Local Electrostatic Potential Calculations


Calculating the pKa value for a Brønsted acid is very hard, like really hard. A full thermodynamic cycle (fig. 1) needs to be calculated along with the high-accuracy solvation free energy for each of the species under consideration, not to mention the use of expensive methods which will be reviewed here in another post in two weeks time.

Thermodynamic_Cycle
Fig 1. Thermodynamic Cycle for the pKa calculation of any given Bronsted acid, HA

Finding descriptors that help us circumvent the need for such sophisticated calculations can help great deal in estimating the pKa value of any given acid. We’ve been interested in the reactivity of σ-hole bearing groups in the past and just like Halogen, Tetrel, Pnicogen and Chalcogen bonds, Hydrogen bonds are highly directional and their strength depends on the polarization of the O-H bond. Therefore, we suggested the use of the maximum surface electrostatic potential (VS,max) on the acid hydrogen atom of carboxylic acids as a descriptor for the strength of their interaction with water, the first step  in the deprotonation process. 

We selected six basis sets; five density functionals; the MP2 method for a total of thirty-six levels of theory to optimize and calculate VS,max on thirty carboxylic acids for a grand total of 1,080 wavefunctions, which were later passed onto MultiWFN (all calculations were taken with PCM = water). Correlation with the experimental pKa values showed a great correlation across the levels of theory (R2 > 0.9), except for B3LYP. Still, the best correlations were obtained with LC-wPBE/cc-pVDZ and wB97XD/cc-pVDZ. From this latter level of theory the linear correlation yielded the following equation:

pKa = -0.2185(VS,max) + 16.1879

Differences in pKa turned out to be less than 0.5 units, which is remarkable for such a straightforward method; bear in mind that calculation of full thermodynamic cycles above chemical accuracy (1.0 kcal/mol) yields pKa differences above 1.0 units.

We then took this equation for a test with 10 different carboxylic acids and the prediction had a correlation of 98% (fig. 2)

47051619_1824157374360101_2244437569725005824_n
fig 2. calculated v experimental pKa values for a test set of 10 carboxylic acids from equation above

I think this method can really catch on for a quick way to predict the pKa values of any carboxylic acid imaginable. We’re now working on the model extension to other groups (i.e. Bronsted bases) and putting together a black-box workflow so as to make it even more accessible and straightforward to use. 

We’ve recently published this work in the journal Molecules, an open access publication. Thanks to Prof. Steve Scheiner for inviting us to participate in the special issue devoted to tetrel bonding. Thanks to Guillermo Caballero for the inception of this project and to Dr. Jacinto Sandoval for taking the time from his research in photosynthesis to work on this pet project of ours and of course the rest of the students (Gustavo Mondragón, Marco Diaz, Raúl Torres) whose hard work produced this work.

Advertisements

Computational Chemistry from Latin America


The video below is a sad recount of the scientific conditions in Mexico that have driven an enormous amount of brain power to other countries. Doing science is always a hard endeavour but in developing countries is also filled with so many hurdles that it makes you wonder if it is all worth the constant frustration. 

That is why I think it is even more important for the Latin American community to make our science visible, and special issues like this one from the International Journal of Quantum Chemistry goes a long way in doing so. This is not the first time IJQC devotes a special issue to the Comp.Chem. done south of the proverbial border, a full issue devoted to the Mexican Physical Chemistry Meetings (RMFQT) was also published six years ago.

I believe these special issues in mainstream journals are great ways of promoting our work in a collected way that stresses our particular lines of research instead of having them spread a number of journals. Also, and I may be ostracized for this, but I think coming up with a new journal for a specific geographical community represents a lot of effort that takes an enormous amount of time to take off and thus gain visibility. 

For these reasons I’ve been cooking up some ideas for the next RMFQT website. I don’t pretend to say that my colleagues need any shoutouts from my part -I could only be so lucky to produce such fine pieces of research myself- but it wouldn’t hurt to have a more established online presence as a community. 

¡Viva la ciencia Latinoamericana!

The HOMO-LUMO Gap in Open Shell Calculations. Meaningful or meaningless?


The HOMO – LUMO orbitals are central to the Frontier Molecular Orbital (FMO) Theory devised by Kenichi Fukui back in the fifties. The central tenet of the FMO theory resides on the idea that most of chemical reactivity is dominated by the interaction between these orbitals in an electron donor-acceptor pair, in which the most readily available electrons of the former arise from the HOMO and will land at the LUMO in the latter. The energy difference between the HOMO and LUMO of any chemical species, known as the HOMO-LUMO gap, is a very useful quantity for describing and understanding the photochemistry and photophysics of organic molecules since most of the electronic transitions in the UV-Vis region are dominated by the electron transfer between these two frontier orbitals.

But when we talk about Frontier Orbitals we’re usually referring to their doubly occupied version; in the case of open shell calculations the electron density with α spin is separate from the one with β spin, therefore giving rise to two separate sets of singly occupied orbitals and those in turn have a α-HOMO/LUMO and β-HOMO/LUMO, although SOMO (Singly Occupied Molecular Orbital) is the preferred nomenclature. Most people will then dismiss the HOMO/LUMO question for open shell systems as meaningless because ultimately we are dealing with two different sets of molecular orbitals. Usually the approach is to work backwards when investigating the optical transitions of a, say, organic radical, e.g. by calculating the transitions with such methods like TD-DFT (Time Dependent DFT) and look to the main orbital components of each within the set of α and β densities.

To the people who have asked me this question I strongly suggest to first try Restricted Open calculations, RODFT, which pair all electrons and treat them with identical orbitals and treat the unpaired ones independently. As a consequence, RO calculations and Unrestricted calculations vary due to variational freedom. RO calculations could yield wavefunctions with small to large values of spin contamination, so beware. Or just go straight to TDDFT calculations with hybrid orbitals which include a somewhat large percentage of HF exchange and polarized basis sets, but to always compare results to experimental values, if available, since DFT based calculations are Kohn-Sham orbitals which are defined for non-interacting electrons so the energy can be biased. Performing CI or CASSCF calculations is almost always prohibitive for systems of chemical interest but of course they would be the way to go.

Post Calculation Addition of Empirical Dispersion – Fixing interaction energies


Calculation of interaction energies is one of those things people are more concerned with and is also something mostly done wrong. The so called ‘gold standard‘ according to Pavel Hobza for calculating supramolecular interaction energies is the CCSD(T)/CBS level of theory, which is highly impractical for most cases beyond 50 or so light atoms. Basis set extrapolation methods and inclusion of electronic correlation with MP2 methods yield excellent results but they are not nonetheless almost as time consuming as CC. DFT methods in general are terrible and still are the most widely used tools for electronic structure calculations due to their competitive computing times and the wide availability of schemes for including  terms which help describe various kinds of interactions. The most important ingredients needed to get a decent to good interaction energies values calculated with DFT methods are correlation and dispersion. The first part can be recreated by a good correlation functional and the use of empirical dispersion takes care of the latter shortcoming, dramatically improving the results for interaction energies even for lousy functionals such as the infamous B3LYP. The results still wont be of benchmark quality but still the deviations from the gold standard will be shortened significantly, thus becoming more quantitatively reliable.

There is an online tool for calculating and adding the empirical dispersion from Grimme’s group to a calculation which originally lacked it. In the link below you can upload your calculation, select the basis set and functionals employed originally in it, the desired damping model and you get in return the corrected energy through a geometrical-Counterpoise correction and Grimme’s empirical dispersion function, D3, of which I have previously written here.

The gCP-D3 Webservice is located at: http://wwwtc.thch.uni-bonn.de/

The platform is entirely straightforward to use and it works with xyz, turbomole, orca and gaussian output files. The concept is very simple, a both gCP and D3 contributions are computed in the selected basis set and added to the uncorrected DFT (or HF) energy (eq. 1)

eq1 (1)

If you’re trying to calculate interaction energies, remember to perform these corrections for every component in your supramolecular assembly (eq. 2)

eq2(2)

Here’s a screen capture of the outcome after uploading a G09 log file for the simplest of options B3LYP/6-31G(d), a decomposed energy is shown at the left while a 3D interactive Jmol rendering of your molecule is shown at the right. Also, various links to the literature explaining the details of these calculations are available in the top menu.

Figure1

I’m currently writing a book chapter on methods for calculating ineraction energies so expect many more posts like this. A special mention to Dr. Jacinto Sandoval, who is working with us as a postdoc researcher, for bringing this platform to my attention, I was apparently living under a rock.

 

DFT Textbook in Spanish by Dr. José Cerón-Carrasco


Today’s science is published mostly in English, which means that non-English speakers must first tackle the language barrier before sharing their scientific ideas and results with the community; this blog is a proof that non-native-English speakers such as myself cannot outreach a large audience in another language.

test

For young scientists learning English is a must nowadays but it shouldn’t shy students away from learning science in their own native tongues. To that end, the noble effort by Dr. José Cerón-Carrasco from Universidad Católica San Antonio de Murcia, in Spain, of writing a DFT textbook in Spanish constitutes a remarkable resource for Spanish-speaking computational chemistry students because it is not only a clear and concise introduction to ab initio and DFT methods but because it was also self published and written directly in Spanish. His book “Introducción a los métodos DFT: Descifrando B3LYP sin morir en el intento” is now available in Amazon. Dr. Cerón-Carrasco was very kind to invite me to write a prologue for his book, I’m very thankful to him for this opportunity.

Así que para los estudiantes hispanoparlantes hay ahora un muy valioso recurso para aprender DFT sin morir en el intento gracias al esfuerzo y la mente del Dr. José Pedro Cerón Carrasco a quien le agradezco haberme compartido la primicia de su libro

¡Salud y olé!

Python scripts for calculating Fukui Indexes


One of the most popular posts in this blog has to do with calculating Fukui indexes, however, when dealing with a large number of molecules, our described methodology can become cumbersome since it requires to manually extract the population analysis from two or three different output files and then performing the arithmetic on them separately with a spreadsheet or something.

Our new team member Ricardo Loaiza has written a python script that takes the three aforementioned files and yields a .csv file with the calculated Fukui indexes, and it even points out which of the atoms exhibit the largest values so if you have a large molecule you don’t have to manually check for them. We have also a batch version which takes all the files in any given directory and performs the Fukui calculations for each, provided it can find file triads with the naming requirements described below.

Output files must be named filename.log (the N electrons reference state), filename_plus.log (the state with N+1 electrons) and filename_minus.log (the N-1 electrons state). Another restriction is that so far these scripts only work with NBO population analysis as provided by the NBO3.1 program available in the various versions of Gaussian. I imagine the listing is similar in NBO5.x and NBO6.x and so it should work if you do the population analysis with them.

The syntax for the single molecule version is:

python fukui.py filename.log filename_minus.log filename_plus.log

For the batch version is:

./fukuiPorLote.sh

(Por Lote means In Batch in Spanish.)

These scripts are available via GitHub. We hope you find them useful, and you do please let us know whether here at the comments section or at our GitHub site.

Photosynthesis and Singlet Fission – #WATOC2017 PO1-296


If you work in the field of photovoltaics or polyacene photochemistry, then you are probably aware of the Singlet Fission (SF) phenomenon. SF can be broadly described as the process where an excited singlet state decays to a couple of degenerate coupled triplet states (via a multiexcitonic state) with roughly half the energy of the original singlet state, which in principle could be centered in two neighboring molecules; this generates two holes with a single photon, i.e. twice the current albeit at half the voltage (Fig 1).

Imagen1

Jablonski’s Diagram for SF

It could also be viewed as the inverse process to triplet-triplet annihilation. An important requirement for SF is that the two triplets to which the singlet decays must be coupled in a 1(TT) state, otherwise the process is spin-forbidden. Unfortunately (from a computational perspective) this also means that the 3(TT) and 5(TT) states are present and should be taken into account, and when it comes to chlorophyll derivatives the task quickly scales.

SF has been observed in polyacenes but so far the only photosynthetic pigments that have proven to exhibit SF are some carotene derivatives; so what about chlorophyll derivatives? For a -very- long time now, we have explored the possibility of finding a naturally-occurring, chlorophyll-based, photosynthetic system in which SF could be possible.

But first things first; The methodology: It was soon enough clear, from María Eugenia Sandoval’s MSc thesis, that TD-DFT wasn’t going to be enough to capture the whole description of the coupled states which give rise to SF. It was then that we started our collaboration with SF expert, Prof. David Casanova from the Basque Country University at Donostia, who suggested the use of Restricted Active Space – Spin Flip in order to account properly for the spin change during decay of the singlet excited state. A set of optimized bacteriochlorophyll-a molecules (BChl-a) were oriented ad-hoc so their Qy transition dipole moments were either parallel or perpendicular; the rate to which SF could be in principle present yielded that both molecules should be in a parallel Qy dipole moments configuration. When translated to a naturally-occurring system we sought in two systems: The Fenna-Matthews-Olson complex (FMO) containing 7 BChl-a molecules and a chlorosome from a mutant photosynthetic bacteria made up of 600 Bchl-d molecules (Fig 2). The FMO complex is a trimeric pigment-protein complex which lies between the antennae complex and the reaction center in green sulfur dependent photosynthetic bacteria such as P. aestuarii or C. tepidium, serving thus as a molecular wire in which is known that the excitonic transfer occurs with quantum coherence, i.e. virtually no energy loss which led us to believe SF could be an operating mechanism. So far it seems it is not present. However, for a crystallographic BChl-d dimer present in the chlorosome it could actually occur even when in competition with fluorescence.

FMO

FMO Complex. Trimer (left), monomer (center), pigments (right)

Imagen2

BChQRU chlorosome. 600 Bchl-d molecules

I will keep on blogging more -numerical and computational- details about these results and hopefully about its publication but for now I will wrap this post by giving credit where credit is due: This whole project has been tackled by our former lab member María Eugenia “Maru” Sandoval and Gustavo Mondragón. Finally, after much struggle, we are presenting our results at WATOC 2017 next week on Monday 28th at poster session 01 (PO1-296), so please stop by to say hi and comment on our work so we can improve it and bring it home!

Grimme’s Dispersion DFT-D3 in Gaussian #CompChem


I was just asked if it is possible to perform DFT-D3 calculations in Gaussian and my first answer was to use the following  keyword:

EmpiricalDispersion=GD3

which is available in G16 and G09 only in revision D, apparently.

There are also some overlays that can be used to invoke the use dispersion in various scenarios:

IOp(3/74=x) Exchange and Correlation Potentials

-77

-76

-60

-59

DSD-PBEP86 (double hybrid, DFT-D3).

PW6B95-D3.

B2PLYP-D3 (double hybrid, DFT-D3).

B97-D (DFT-D3).

IOp(3/76=x) Mixing of HF and DFT.

-33 PW6B95 and PW6B95-D3 coefficients.

IOp(3/124=x) Empirical dispersion term.

30

40

50

Force dispersion type 3 (Grimme DFT-D3).

Force dispersion type 4 (Grimme DFT-D3(BJ)).

Force dispersion type 5 (Grimme D3, PM7 version).

 

The D3 correction method of Grimme defines the van der Waals energy like:

$\displaystyle E_{\rm disp} = -\frac{1}{2} \sum_{i=1}^{N_{at}} \sum_{j=1}^{N_{at...
...{6ij}} {r_{ij,{L}}^6} +f_{d,8}(r_{ij,L})\,\frac{C_{8ij}} {r_{ij,L}^8} \right ),$

where coefficients $ C_{6ij}$ are adjusted depending on the geometry of atoms i and j. The damping D3 function for is:

$\displaystyle f_{d,n}(r_{ij}) = \frac{s_n}{1+6(r_{ij}/(s_{R,n}R_{0ij}))^{-\alpha_{n}}},$

where the values of s are adjustable parameters fit for the exchange-correlation functionals used in each calculation.

Atoms in Molecules (QTAIM) – Flash lesson


As far as population analysis methods goes, the Quantum Theory of Atoms in Molecules (QTAIM) a.k.a Atoms in Molecules (AIM) has become a popular option for defining atomic properties in molecular systems, however, its calculation is a bit tricky and maybe not as straightforward as Mulliken’s or NBO.

Personally I find AIM a philosophical question since, after the introduction of the molecule concept by Stanislao Cannizzaro in 1860 (although previously developed by Amadeo Avogadro who was dead at the time of the Karlsruhe congress), the questions of whether or not an atom retains its identity when bound to others? where does an atom end and the next begins? What are the connections between atoms in a molecule? are truly interesting and far deeper than we usually consider because it takes a big mental leap to think about how matter is organized to give rise to substances. Particularly I’m very interested with the concept of a Molecular Graph which in turn is concerned with the way we “draw lines” to form conceptual molecules. Perhaps in a different post we can go into the detail of the method, which is based in the Laplacian operator of the electron density, but today, I just want to collect the basic steps in getting the most basic AIM answers for any given molecule. Recently, my good friend Pezhman Zarabadi-Poor and I have used rather extensively the following procedure. We hope to have a couple of manuscripts published later on. Therefore, I’ve asked Pezhman to write a sort of guest post on how to run AIMALL, which is our selected program for the integration algorithm.

The first thing we need is a WFN or WFX file, which contains the wavefunction in a Fortran unformatted file on which the Laplacian integration is to be performed. This is achieved in Gaussian09 by incluiding the keyword output=wfn or output=wfx in the route section and adding a name for this file at the bottom line of the input file, e.g.

filename.wfn

(NOTE: WFX is an eXtended version of  WFN; particularly necessary when using pseudopotentials or ECP’s)

Analyzing this file requires the use of a third party software such as AIMALL suite of programs, of which the standard version is free of charge upon registration to their website.

OpenAIMStudio (the accompanying graphical interface) and select the AIMQB program from the run menu as shown in figure 1.

 

Figure 1

Figure 1

Select your WFN/WFX file on which the calculation is to be run. (Figure 2)

 

Figure 2

Figure 2

You can control several options for the integration of the Laplacian of the electron density as well as other features. If your molecules are simple enough, you may go through with a successful and meaningful calculation using the default settings. After the calculation is finished, several result files are obtained. We’ll work in this tutorial only with *.mpgviz (which contains information about the molecular graph, MG) and *.sum (which contains all of  needed numerical data).

Visualization of the MG yields different kinds of critical points, such as: 1) Nuclear Attractor Critical Points (NACP); 2) Bond Critical Points (BCP); 3) Ring CP’s (RCP); and 4) Cage CP’s (CCP).

Of the above, BCP are the ones that indicate the presence of a chemical bond between two atoms, although this conclusion is not without controversy as pointed out by Foroutan-Njead in his paper: C. Foroutan-Nejad, S. Shahbazian and R. Marek, Chemistry – A European Journal, 2014, 20, 10140-10152. However, at a first approximation, BCP’s can help us to explore chemical interactions.

Now, let’s go back to visualizing those MGs (in our examples we’ve used methane and ethylene and acetylene). We open the corresponding *.mpgviz file in AIMStudio and export the image from the file menu and using the save as picture option (figure 3).

Figure 3

Figure 3

The labeled atoms are NACP’s while the green dots correspond to BCP’s. Multiplicity of a bond cannot be discerned within the MG; in order to find out whether a bond is a single, double or triple bond we have to look into the *.sum file, in which we’ll take a look at the bond orders between pairs of atoms in the section labeled “Diatomic Electron Pair Contributions and Delocalization Data” (Figure 4).

Figure 4

Figure 4

Delocalization indexes, DI’s, show the approximate number of electrons shared between two atoms. From the above examples we get the following DI(C,C) values: 1.93 for C2H4 and 2.87 for C2H2; on the other hand, DI(C,H) values are  0.98 for CH4, 0.97 in C2H4 and 0.96 in C2H2. These are our usual bond orders.

This is the first part of a crash tutorial on AIM, in my opinion this is the very basics anyone needs to get started with this interesting and widespread method. Thanks to all who asked about QTAIM, now you have your long answer.

Thanks a lot to my good friend Dr Pezhman Zarabadi-Poor for providing this contribution to the blog, we hope you all find it helpful. Please share and comment.

New paper in JACS


Well, I only contributed with the theoretical section by doing electronic structure calculations, so it isn’t really a paper we can ascribe to this particular lab, however it is really nice to see my name in JACS along such a prominent researcher as Prof. Chad Mirkin from Northwestern University, in a work closely related to my area of research interest as macrocyclic recognition agents.

In this manuscript, a calix[4]arene is allosterically opened and closed reversibly by coordinating different kinds of ligands to a platinum center linked to the macrocycle. (This approach has been referred to as the weak link approach.) I recently visited Northwestern and had a great time with José Mendez-Arroyo, the first author, who showed me around and opened the possibility for further work between our research groups.

(Ligands: Green = Chloride; Blue = Cyanide)

Closed, semi-open and fully open conformations; selectivity is modulated through cavity size. (Ligands: Green = Chloride; Blue = Cyanide)

Here at UNAM we calculated the interaction energies for the two guests that were successfully inserted into the cavity: N-methyl-pyridinium (Eint = 57.4 kcal/mol) and Pyridine-N-oxide (Eint = +200.0 kcal/mol). Below you can see the electrostatic potential mapped onto the electron density isosurface for one of the adducts. Relative orientation of the hosts within the cavity follows the expected (anti-) alignment of mutual dipole moments. At this level of theory, we could easily be inclined to assert that the most stable interaction is indeed the one from the semi-open compound and that this in turn is due to the fact that host and guest are packed closer together but there is also an orbital issue: Pyridine Oxide is a better electron acceptor than N-Me-pyridinium and when we take a closer look to the (Natural Bonding) orbitals interacting it becomes evident that a closer location does not necessarily yields a stronger interaction when the electron accepting power of the ligand is weaker (which is, in my opinion, both logic and at the same time a bit counterintuitive, yet fascinating, nonetheless).

Electrostatic potential mapped onto the electron density surface of one of the aducts under study

Electrostatic potential mapped onto the electron density surface of one of the adducts under study

All calculations were performed at the B97D/LANL2DZ level of theory with the use of Gaussian09 and NBO3.1 as provided within the former. Computing time at UNAM’s supercomputer known as ‘Miztli‘ is fully acknowledged.

The full citation follows:

A Multi-State, Allosterically-Regulated Molecular Receptor With Switchable Selectivity
Jose Mendez-Arroyo Joaquín Barroso-Flores §,Alejo M. Lifschitz Amy A. Sarjeant Charlotte L. Stern , and Chad A. Mirkin *

J. Am. Chem. Soc., Article ASAP
DOI: 10.1021/ja503506a
Publication Date (Web): July 9, 2014

 Thanks to José Mendez-Arroyo for contacting me and giving me the opportunity to collaborate with his research; I’m sure this is the first of many joint projects that will mutually benefit our groups. 

 

%d bloggers like this: