Blog Archives

Mg²⁺ Needs a 5th Coordination in Chlorophylls – New paper in IJQC


Photosynthesis, the basis of life on Earth, is based on the capacity a living organism has of capturing solar energy and transform it into chemical energy through the synthesis of macromolecules like carbohydrates. Despite the fact that most of the molecular processes present in most photosynthetic organisms (plants, algae and even some bacteria) are well described, the mechanism of energy transference from the light harvesting molecules to the reaction centers are not entirely known. Therefore, in our lab we have set ourselves to study the possibility of some excitonic transference mechanisms between pigments (chlorophyll and its corresponding derivatives). It is widely known that the photophysical properties of chlorophylls and their derivatives stem from the electronic structure of the porphyrin and it is modulated by the presence of Mg but its not this ion the one that undergoes the main electronic transitions; also, we know that Mg almost never lies in the same plane as the porphyrin macrocycle because it bears a fifth coordination whether to another pigment or to a protein that keeps it in place (Figure 1).

TOC_final

Figure 1 The UV-Vis spectra of BCHl-a changes with the coordination state

During our calculations of the electronic structure of the pigments (Bacteriochlorophyll-a, BChl-a) present in the Fenna-Matthews-Olson complex of sulfur dependent bacteria we found that the Mg²⁺ ion at the center of one of these pigments could in fact create an intermolecular interaction with the C=C double bond in the phytol fragment which lied beneath the porphyrin ring.

fig3

Figure 2 Mg points ‘downwards’ upon optimization, hinting to the interaction under study

 

This would be the first time that a dihapto coordination is suggested to occur in any chlorophyll and that on itself is interesting enough but we took it further and calculated the photophysical implications of having this fifth intramolecular dihapto coordination as opposed to a protein or none for that matter. Figure 3 shows that the calculated UV-Vis spectra (calculated with Time Dependent DFT at the CAM-B3LYP functional and the cc-pVDZ, 6-31G(d,p) and 6-31+G(d,p) basis sets). A red shift is observed for the planar configuration, respect to the five coordinated species (regardless of whether it is to histidine or to the C=C double bond in the phytyl moiety).

 

Fig6

Figure 3 CAMB3LYP UV-VIS spectra. Basis set left to right cc-PVDZ, 6-31G(d,p) and 6-31+G(d,p)

Before calculating the UV-Vis spectra, we had to unambiguously define the presence of this observed interaction. To that end we calculated to a first approximation the C-Mg Wiberg bond indexes at the CAM-B3LYP/cc-pVDZ level of theory. Both values were C(1)-Mg 0.022 and C(2)-Mg 0.032, which are indicative of weak interactions; but to take it even further we performed a non-covalent interactions analysis (NCI) under the Atoms in Molecules formalism, calculated at the M062X density which yielded the presence of the expected critical points for the η²Mg-(C=C) interaction. As a control calculation we performed the same calculation for Magnoscene just to unambiguously assign these kind of interactions (Fig 4, bottom).

Fig4.jpg

Figure 4 (a), (b) NCI analysis for Mg-(C=C) interaction compared to Magnesocene (c)

This research is now available at the International Journal of Quantum Chemistry. A big shoutout and kudos to Gustavo “Gus” Mondragón for his work in this project during his masters; many more things come to him and our group in this and other research ventures.

Advertisements

I’m done with Computational Studies


I’ve lately reviewed a ton of papers whose titles begin with some version of “Computational studies of…“, “Theoretical studies of…” or even more subtly just subtitled “A theoretical/computational study” and even when I gotta confess this is probably something I’ve done once or twice myself, it got me thinking about the place and role of computational chemistry within chemistry itself.

As opposed to physicists, chemists are pressed to defend a utilitarian view of their work and possibly because of that view some computational chemists sometimes lose sight of their real contribution to a study, which is far from just performing a routine electronic structure calculation. I personally don’t like it when an experimental colleague comes asking for ‘some calculations’ without a clear question to be answered by them; Computational Chemistry is not an auxiliary science but a branch of physical chemistry in its own right, one that provides all the insight experiments -chemical or physical- sometimes cannot.

I’m no authority on authoring research papers but I encourage my students to think about the titles of their manuscripts in terms of what the manuscript most heavily relies on; whether it’s the phenomenon, the methodology or the object of the study, that should be further stressed on the title. Papers titled “Computational studies of…” usually are followed by ‘the object of study’ possibly overlooking the phenomenon observed throughout such studies. It is therefore a disservice to the science contained within the manuscript, just like experimental papers gain little from titles such as “Synthesis and Characterization of…“. It all comes down to finding a suitable narrative for our work, something that I constantly remind my students. It’s not about losing rigor or finding a way to oversell our results but instead to actually drive a point home. What did you do why and how. Anna Clemens, a professional scientific writer has a fantastic post on her blog about it and does it far better than I ever could. Also, when ranting on Twitter, the book Houston, we have a narrative was recommended to me, I will surely put it my to-read list.

While I’m on the topic of narratives in science, I’m sure Dr. Stuart Cantrill from Nature Chemistry wouldn’t mind if I share with you his deconstruction of an abstract. Let’s play a game and give this abstract a title in the comments section based on the information vested in it.DcJCrr_W0AQCNQZ

A new paper on the Weak Link Approach


Chemically actuating a molecule is a very cool thing to do and the Weak Link Approach (WLA) allows us to do precisely that through the reversible coordination of one or various organometallic centers to a longer ligand that opens or closes a macrocyclic cavity. All this leads to an allosteric effect so important in biological instances available in inorganic molecules. Once again, the Mirkin group at Nortwestern University in Evanston, Illinois, has given me the opportunity to contribute with the calculations to the energetic properties of these actuators as well as their electronic properties for their use as molecular scavengers or selective capsules for various purposes such as drug delivery agents.

As in the previous WLA work (full paper), the NBODel procedure was used at the B97D/LANL2DZ level of theory, only this time the macrocycle consisted of two organometallic centers and for the first time the asymmetric opening of the cavity was achieved, as observed by NMR. With the given fragments, all possibilities shown in scheme 1 were obtained. The calculated bond energies for the Pt – S bonds are around 60 – 70 kcal/mol whereas for the Pt – Cl bonds the values are closer to 90 kcal/mol. This allows for a selective opening of the cavity which can then be closed by removing the chlorine atoms with the help of silver salts.

wla

For the case of complex mixture 4a, 4b, and 4c, the thermochemistry calculations show they are all basically isoenergetic with differences in the thousandths of kcal/mol. The possibilities for the groups in the weakly bonded ligands are enormous; currently, there is work being done about substituting those phenyl rings for calix[4]arenes in order to have a macrucyclic capsule made by macrocylic capusules.

Thanks to Andrea D’Aquino for taking me into her project, for all the stimulating discussions and her great ideas for expanding WLA into new avenues; I’m sure she’ll succeed in surprising us with more possibilities for these allosteric macrocycles.

The full paper is published in Inorganic Chemistry from the ACS (DOI: 10.1021/acs.inorgchem.7b02745). Thanks for reading and -if you made it this far into the post- happy new year!

Collaborations in Inorganic Chemistry


I began my path in computational chemistry while I still was an undergraduate student, working on my thesis under professor Cea at unam, synthesizing main group complexes with sulfur containing ligands. Quite a mouthful, I know. Therefore my first calculations dealt with obtaining Bond indexed for bidentate ligands bonded to tin, antimony and even arsenic; yes! I worked with arsenic once! Happily, I keep a tight bond (pun intended) with inorganic chemists and the recent two papers published with the group of Prof. Mónica Moya are proof of that.

In the first paper, cyclic metallaborates were formed with Ga and Al but when a cycle of a given size formed with one it didn’t with the other (fig 1), so I calculated the relative energies of both analogues while compensating for the change in the number of electrons with the following equation:

Fig 1

Imagen1

Under the same conditions 6-membered rings were formed  with Ga but not with Al and 8-membered rings were obtained for Al but not for Ga. Differences in their covalent radii alone couldn’t account for this fact.

ΔE = E(MnBxOy) – nEM + nEM’ – E(M’nBxOy)                     Eq 1

A seamless substitution would imply ΔE = 0 when changing from M to M’

Imagen2.jpg

Hipothetical compounds optimized at the B3LYP/6-31G(d,p) level of theory

The calculated ΔE were: ΔE(3/3′) = -81.38 kcal/mol; ΔE(4/4′) = 40.61 kcal/mol; ΔE(5/5′) = 70.98 kcal/mol

In all, the increased stability and higher covalent character of the Ga-O-Ga unit compared to that of the Al analogue favors the formation of different sized rings.

Additionally, a free energy change analysis was performed to assess the relative stability between compounds. Changes in free energy can be obtained easily from the thermochemistry section in the FREQ calculation from Gaussian.

This paper is published in Inorganic Chemistry under the following citation: Erandi Bernabé-Pablo, Vojtech Jancik, Diego Martínez-Otero, Joaquín Barroso-Flores, and Mónica Moya-Cabrera* “Molecular Group 13 Metallaborates Derived from M−O−M Cleavage Promoted by BH3” Inorg. Chem. 2017, 56, 7890−7899

The second paper deals with heavier atoms and the bonds the formed around Yttrium complexes with triazoles, for which we calculated a more detailed distribution of the electronic density and concluded that the coordination of Cp to Y involves a high component of ionic character.

This paper is published in Ana Cristina García-Álvarez, Erandi Bernabé-Pablo, Joaquín Barroso-Flores, Vojtech Jancik, Diego Martínez-Otero, T. Jesús Morales-Juárez, Mónica Moya-Cabrera* “Multinuclear rare-earth metal complexes supported by chalcogen-based 1,2,3-triazole” Polyhedron 135 (2017) 10-16

We keep working on other projects and I hope we keep on doing so for the foreseeable future because those main group metals have been in my blood all this century. Thanks and a big shoutout to Dr. Monica Moya for keeping me in her highly productive and competitive team of researchers; here is to many more years of joint work.

I’m putting a new blog out there


As if I didn’t have enough things to do I’m launching a new blog inspired by the #365papers hashtag on Twitter and the naturalproductman.wordpress.com blog. In it I’ll hopefully list, write a femto-review of all the papers I read. This new effort is even more daunting than the actual reading of the huge digital pile of papers I have in my Mendeley To-Be-Read folder, the fattest of them all. The papers therein wont be a comprehensive review of Comp.Chem. must-read papers but rather papers relevant to our lab’s research or curiosity.

Maybe I’ll include some papers brought to my attention by the group and they could do the review. The whole endeavor might flop in a few weeks but I want to give it a shot; we’ll see how it mutates and if it survives or not. So far I haven’t managed to review all papers read but maybe this post will prompt to do so if only to save some face. The domain of the new blog is compchemdigest.wordpress.com but I think it should have included the word MY at the beginning so as to convey the idea that it is only my own biased reading list. Anyway, if you’re interested share it and subscribe, those post will not be publicized.

Unnatural DNA and Synthetic Biology


Ever since I read the highly praised article by Floyd Romesberg in Nature back in 2013 I got really interested in synthetic biology. In said article, an unnatural base pair (UBP) was not only inserted into a DNA double strand in vivo  but the organism was even able to reproduce the UBPs present in subsequent generations.

Imagen1

Romesberg’s Nucleosides. No Hydrogen bonding is formed between them!

Inserting new unnatural base pairs in DNA works a lot like editing a computer’s code. Inserting a couple UBPs in vitro is like inserting a comment; it wont make a difference but its still there. If the DNA sequence containing the UBPs can be amplified by molecular biology techniques such as PCR it means that a polymerase enzyme is able to recognize it and place it in site, this is equivalent to inserting a ‘hello world’ section into a working code; it will compile but it’s pretty much useless. Inserting these UBPs in vivo means that the organism is able to thrive despite the large deformation in a short section of its genetic code, but having it replicated by the chemical machinery of the nucleus is an amazing feat that only a few molecules could allow.

The ultimate goal of synthetic biology would be to find a UBP which codes effectively and purposefully during translation of DNA.This last feat would be equivalent to inserting a working subroutine in a program with a specific purpose. But not only could the use of UBPs serve for the purposes of expanding the genetic code from a quaternary (base four) to a senary (base six) system: the field of DNA origami could also benefit from having an expansion in the chemical and structural possibilities of the famous double helix; marking and editing a sequence would also become easier by having distinctive sections with nucleotides other than A, T, C and G.

It is precisely in the concept of double helix that our research takes place since the available biochemical machinery for translation and replication can only work on a double helix, else, the repair mechanisms get activated or the DNA will just stop serving its purpose (i.e. the code wont compile).

My good friend, Dr. Rodrigo Galindo and I have worked on the simulation of Romesberg’s UBPs in order to understand the underlying structural, dynamical and electronic causes that made them so successful and to possibly design more efficient UBPs based on a set of general principles. A first paper has been accepted for publication in Phys.Chem.Chem.Phys. and we’re very excited for it; more on that in a future post.

New paper in Tetrahedron #CompChem “Why U don’t React?”


Literature in synthetic chemistry is full of reactions that do occur but very little or no attention is payed to those that do not proceed. The question here is what can we learn from reactions that are not taking place even when our chemical intuition tells us they’re feasible? Is there valuable knowledge that can be acquired by studying the ‘anti-driving force’ that inhibits a reaction? This is the focus of a new manuscript recently published by our research group in Tetrahedron (DOI: 10.1016/j.tet.2016.05.058) which was the basis of Guillermo Caballero’s BSc thesis.

fig1

 

It is well known in organic chemistry that if a molecular structure has the possibility to be aromatic it can somehow undergo an aromatization process to achieve this more stable state. During some experimental efforts Guillermo Caballero found two compounds that could be easily regarded as non-aromatic tautomers of a substituted pyridine but which were not transformed into the aromatic compound by any means explored; whether by treatment with strong bases, or through thermal or photochemical reaction conditions.

fig2

These results led us to investigate the causes that inhibits these aromatization reactions to occur and here is where computational chemistry took over. As a first approach we proposed two plausible reaction mechanisms for the aromatization process and evaluated them with DFT transition state calculations at the M05-2x/6-31+G(d,p)//B3LYP/6-31+G(d,p) levels of theory. The results showed that despite the aromatic tautomers are indeed more stable than their corresponding non-aromatic ones, a high activation free energy is needed to reach the transition states. Thus, the barrier heights are the first reason why aromatization is being inhibited; there just isn’t enough thermal energy in the environment for the transformation to occur.

fig3

But this is only the proximal cause, we went then to search for the distal causes (i.e. the reasons behind the high energy of the barriers). The second part of the work was then the calculation of the delocalization energies and frontier molecular orbitals for the non-aromatic tautomers at the HF/cc-pVQZ level of theory to get insights for the large barrier heights. The energies showed a strong electron delocalization of the nitrogen’s lone pair to the oxygen atom in the carbonyl group. Such delocalization promoted the formation of an electron corridor formed with frontier and close-to-frontier molecular orbitals, resembling an extended push-pull effect. The hydrogen atoms that could promote the aromatization process are shown to be chemically inaccessible.

fig4

Further calculations for a series of analogous compounds showed that the dimethyl amino moiety plays a crucial role avoiding the aromatization process to occur. When this group was changed for a nitro group, theoretical calculations yielded a decrease in the barrier high, enough for the reaction to proceed. Electronically, the bonding electron corridor is interrupted due to a pull-pull effect that was assessed through the delocalization energies.

The identity of the compounds under study was assessed through 1H, 13C-NMR and 2D NMR experiments HMBC, HMQC so we had to dive head long into experimental techniques to back our calculations.

New Paper in JIPH – As(V)@calix[n]arenes


As part of an ongoing collaboration with the University of Arizona (UA) and the Center for Advanced Research and Studies (CINVESTAV – Saltillo), we are looking into the use of calix[n]arenes for bio-remediation agents capable to extract Arsenic (V) and (III) species from water. Water contamination by arsenic is a pressing issue in northern Mexico and the southern US, therefore any efforts aiming to their elimination has strong social and health repercussions.

As in previous studies, all calixarenes were optimized along with their corresponding guests within the cavity, namely H3AsO4, H2AsO4 and HAsO42- at the DFT level with the so-called Minnesota functionals by Truhlar and Cao, M06-2X/6-31G(d,p) level of theory. Interaction energies were calculated through the NBODel procedure. Calixarenes with R = SO3H and PO3H are the most promising leads. This study is now publishes in the Journal of Inclusion Phenomena and Macrocyclic Chemistry (DOI 10.1007/s10847-016-0617-0) as an online first article.

This article is also the first to be published by our undergraduate (and almost grad student in a month) Gustavo Mondragón who took this project on a side to his own research on photosynthesis.

Now my colleagues in Arizona and Saltillo, Prof. Reyes Sierra and Dr. Eddie López, respectively, will work on the experimental side of the project. Further calculations are being undertaken to extend this study to As(III) and to the use of other potential extracting materials such as metallic nanoparticles to which calixarenes could be covalently linked.

New paper in JPC-A


As we approach to the end of another year, and with that the time where my office becomes covered with post-it notes so as to find my way back into work after the holidays, we celebrate another paper published! This time at the Journal of Physical Chemistry A as a follow up to this other paper published last year on JPC-C. Back then we reported the development of a selective sensor for Hg(II); this sensor consisted on 1-amino-8-naphthol-3,6-disulphonic acid (H-Acid) covalently bound to a modified silica SBA-15 surface. H-Acid is fluorescent and we took advantage of the fact that, when in the presence of Hg(II) in aqueous media, its fluorescence is quenched but not with other ions, even with closely related ions such as Zn(II) and Cd(II). In this new report we delve into the electronic reasons behind the quenching process by calculating the most important electronic transitions with the framework laid by the Time Dependent Density Functional Theory (TD-DFT) at the PBE0/cc-pVQZ level of theory (we also included an electron core potential on the heavy metal atoms in order to decrease the time of each calculation). One of the things I personally liked about this work is the combination of different techniques that were used to assess the photochemical phenomenon at hand; some of those techniques included calculation of various bond orders (Mayer, Fuzzy, Wiberg, delocalization indexes), time dependent DFT and charge transfer delocalizations. Although we calculated all these various different descriptors to account for changes in the electronic structure of the ligand which lead to the fluorescence quenching, only delocalization indexes as calculated with QTAIM were used to draw conclusion, while the rest are collected in the SI section.

jpca

Thanks a lot to my good friend and collaborator Dr. Pezhman Zarabadi-Poor for all his work, interest and insight into the rationalization of this phenomenon. This is our second paper published together. By the way, if any of you readers is aware of a way to finance a postdoc stay for Pezhman here at our lab, please send us a message because right now funding is scarce and we’d love to keep bringing you many more interesting papers.

For our research group this was the fourth paper published during 2014. We can only hope (and work hard) to have at least five next year without compromising their quality. I’m setting the goal to be 6 papers; we’ll see in a year if we delivered or not.

I’d like to also take this opportunity to thank all the readers of this little blog of mine for your visits and your live demonstrations of appreciation at various local and global meetings such as the ACS meeting in San Francisco and WATOC14 in Chile, it means a lot to me to know that the things I write are read; if I were to make any New Year’s resolutions it would be to reply quicker to questions posted because if you took the time to write I should take the time to reply.

I wish you all the best for 2015 in and out of the lab!

New paper in JACS


Well, I only contributed with the theoretical section by doing electronic structure calculations, so it isn’t really a paper we can ascribe to this particular lab, however it is really nice to see my name in JACS along such a prominent researcher as Prof. Chad Mirkin from Northwestern University, in a work closely related to my area of research interest as macrocyclic recognition agents.

In this manuscript, a calix[4]arene is allosterically opened and closed reversibly by coordinating different kinds of ligands to a platinum center linked to the macrocycle. (This approach has been referred to as the weak link approach.) I recently visited Northwestern and had a great time with José Mendez-Arroyo, the first author, who showed me around and opened the possibility for further work between our research groups.

(Ligands: Green = Chloride; Blue = Cyanide)

Closed, semi-open and fully open conformations; selectivity is modulated through cavity size. (Ligands: Green = Chloride; Blue = Cyanide)

Here at UNAM we calculated the interaction energies for the two guests that were successfully inserted into the cavity: N-methyl-pyridinium (Eint = 57.4 kcal/mol) and Pyridine-N-oxide (Eint = +200.0 kcal/mol). Below you can see the electrostatic potential mapped onto the electron density isosurface for one of the adducts. Relative orientation of the hosts within the cavity follows the expected (anti-) alignment of mutual dipole moments. At this level of theory, we could easily be inclined to assert that the most stable interaction is indeed the one from the semi-open compound and that this in turn is due to the fact that host and guest are packed closer together but there is also an orbital issue: Pyridine Oxide is a better electron acceptor than N-Me-pyridinium and when we take a closer look to the (Natural Bonding) orbitals interacting it becomes evident that a closer location does not necessarily yields a stronger interaction when the electron accepting power of the ligand is weaker (which is, in my opinion, both logic and at the same time a bit counterintuitive, yet fascinating, nonetheless).

Electrostatic potential mapped onto the electron density surface of one of the aducts under study

Electrostatic potential mapped onto the electron density surface of one of the adducts under study

All calculations were performed at the B97D/LANL2DZ level of theory with the use of Gaussian09 and NBO3.1 as provided within the former. Computing time at UNAM’s supercomputer known as ‘Miztli‘ is fully acknowledged.

The full citation follows:

A Multi-State, Allosterically-Regulated Molecular Receptor With Switchable Selectivity
Jose Mendez-Arroyo Joaquín Barroso-Flores §,Alejo M. Lifschitz Amy A. Sarjeant Charlotte L. Stern , and Chad A. Mirkin *

J. Am. Chem. Soc., Article ASAP
DOI: 10.1021/ja503506a
Publication Date (Web): July 9, 2014

 Thanks to José Mendez-Arroyo for contacting me and giving me the opportunity to collaborate with his research; I’m sure this is the first of many joint projects that will mutually benefit our groups. 

 

%d bloggers like this: