Blog Archives

#CompChem – Can Orbitals Be Directly Observed?


No. 

Advertisements

The Gossip Approach to Scientific Writing


Communication of scientific findings is an essential skill for any scientist, yet it’s one of those things some students are reluctant to do partially because of the infamous blank page scare. Once they are confronted to writing their thesis or papers they make some common mistakes like for instance not thinking who their audience is or not adhering to the main points. One of the the highest form of communication, believe it or not, is gossip, because gossip goes straight to the point, is juicy (i.e. interesting) and seldom needs contextualization i.e. you deliver it just to the right audience (that’s why gossiping about friends to your relatives is almost never fun) and you do it at the right time (that’s the difference between gossips and anecdotes). Therefore, I tell my students to write as if they were gossiping; treat your research in a good narrative way, because a poor narrative can make your results be overlooked.

I’ve read too many theses in which conclusions are about how well the methods work, and unless your thesis has to do with developing a new method, that is a terrible mistake. Methods work well, that is why they are established methods.

Take the following example for a piece of gossip: Say you are in a committed monogamous relationship and you have the feeling your significant other is cheating on you. This is your hypothesis. This hypothesis is supported by their strange behavior, that would be the evidence supporting your hypothesis; but be careful because there could also be anecdotal evidence which isn’t significant to your own as in the spouse of a friend had this behavior when cheating ergo mine is cheating too. The use of anecdotal evidence to support a hypothesis should be avoided like the plague. Then, you need an experimental setup to prove, or even better disprove, your hypothesis. To that end you could hack into your better half’s email, have them followed either by yourself or a third party, confronting their friends, snooping their phone, just basically about anything that might give you some information. This is the core of your research: your data. But data is meaningless without a conclusion, some people think data should speak for itself and let each reader come up with their own conclusions so they don’t get biased by your own vision and while there is some truth to that, your data makes sense in a context that you helped develop so providing your own conclusions is needed or we aren’t scientists but stamp collectors.

This is when most students make a terrible mistake because here is where gossip skills come in handy: When asked by friends (peers) what was it that you found out, most students will try to convince them that they knew the best algorithms for hacking a phone or that they were super conspicuous when following their partners or even how important was the new method for installing a third party app on their phones to have a text message sent every time their phone when outside a certain area, and yeah, by the way, I found them in bed together. Ultimately their question is left unanswered and the true conclusion lies buried in a lengthy boring description of the work performed; remember, you performed all that work to reach an ultimate goal not just for the sake of performing it.

Writers say that every sentence in a book should either move the story forward or show character; in the same way, every section of your scientific written piece should help make the point of your research, keep the why and the what distinct from the how, and don’t be afraid about treating your research as the best piece of gossip you’ve had in years because if you are a science student it is.

 

Annual state of the Research Group


Like everybody else, we are doing a brief recount of the achievements of this lab during 2016 if for no better reason because it helps me map my annual report.

We published seven articles:

  1. A Mixed DFT-MD Methodology for the In Silico Development of Drug Releasing Macrocycles. Calix and Thia-Calix[n]Arenes as Carriers for Bosutinib and Sorafenib Journal of Computational Chemistry 2016, 37, 10, 940–946
  2. In silico design of calixarene-based arsenic acid removal agents J Incl Phenom Macrocycl Chem (2016) 85:169–174
  3. Aromatization of pyridinylidenes into pyridines is inhibited by exocyclic delocalization. A theoretical mechanistic assessment Tetrahedron 72 (2016) 4194-4200
  4. Reactivity of electrophilic chlorine atoms due to σ-holes: a mechanistic assessment of the chemical reduction of a trichloromethyl group by sulfur nucleophiles Phys. Chem. Chem. Phys., 2016, 18, 27300-27307
  5. Ab Initio Modeling Of Friction Reducing Agents Shows Quantum Mechanical Interactions Can Have Macroscopic Manifestation J. Phys. Chem. A, 2016, 120 (46), pp 9244–9248
  6.  Crystal Structure and DFT Studies of 4-Methyl-N-(1-phenylethyl)-N´-(1-phenylethylidene)benzenesulfonohydrazide. Evidence of a carbene insertion in the formation of acetophenone azine fromacetophenone p-toluensulfonyl hydrazone. Canadian Journal of Chemistry 2016 (doi: 10.1139/cjc-2016-0183)
  7. Synthesis and Crystal Structures of Stable 4-Aryl-2-(trichloromethyl)-1,3-diaza-1,3-butadienes Synthesis 2016, 48, 2205–2212

Two students got their degrees:

  1. María Eugenia “Maru” Sandoval got her Masters Degree with a thesis on mechanisms for the excitonic transference in photosynthetic pigments.
  2. Gustavo “Gus” Mondragón got his Bachelor of Sciences Degree also with a thesis on mechanisms for the excitonic transference in photosynthetic pigments.

And even a patent was filed! (more on that next year when appropriate.)

We participated in the annual Mexican Meeting on Theoretical Physical Chemistry with four posters and the internal symposium both at CCIQS and the Institute of Chemistry.

2016 was a great year for us and we hope to have an even better 2017 but just as before it will only be possible thanks to the hard work and dedication of all the members of this lab, -some of which have now left us to pursuit higher ends like Maru Sandoval who leaves for Spain and Guillermo Caballero who is already at Cambridge- and also to my colleagues who keep inviting us to collaborate in exciting projects. We have new members in the lab and also new research interests but the one common denominator throughout the years in the lab is fun; having fun in doing chemistry always.

Thank you to everyone who has ever read this blog and to those who have dropped a line here and there; I know I’ve neglected this space during this year, I want to fix it in 2017. May next year be awesome for everyone; lets make it so!

Finite Element(s) Chemistry


(Ah! Mathematicians, did you see what I did there?)

There are a number of appalling videos on line in which iPhones are destroyed by various means. From a chemist standpoint, the reason why I’m so disgusted with them is the waste of rare elements which go into the making of their components: From Neodymium to Indium, most of these metals come from conflict zones in which they are extracted in the most precarious conditions imaginable, but furthermore, they are so scarce the production of electronics is almost unsustainable. I wont post any links to these infuriating videos so as to not direct traffic to any of them, instead I will direct your attention to a wonderful book titled The Elements of Power: Gadgets, Guns, and the Struggle for a Sustainable Future in the Rare Metal Age by David S. Abraham. (Sheesh! Nobody uses short titles anymore? Can you imagine Nabokov writing Lolita: A little girl with a not so little mind and the professor who picked up on that? I digress.) It is hard not to read this long-titled book and feel a tad guilty; it is in fact a bit blackmailing but above all, realizing what a wasteful society (ugh! I hate that word) we are makes a strong wake up call to the future of sustainability. I would never claim that the solution is renouncing to technology but instead to find a sustainable technology within the framework of current technology. Easier said than done -of course- but stopping waste of such precious resources should be the first step in everyones mind, and don’t even get me started on balloons filled with He! In all fairness, one can also find a lot of scary articles on line from dubious to respectful on how smartphones and other rare-metals-containing gadgets are damaging the Earth.

Last year I enjoyed reading Andy Weir’s novel The Martian (later a major motion picture from Alien’s director Ridley Scott), in which an astronaut is stranded in Mars -left for dead by his crewmates, with nothing but the finite supplies of the station and his knowledge of chemistry, botany and engineering, all of which allows him to survive by extending, but above all reusing, those resources which included not only food but O2, H2O and even hydrazine, H2N2 originally intended for fuel but from where he now gets H2 for synthesizing a larger supply of water by reacting it with the O2 pulled out of the CO2-filled Martian atmosphere. I’m pretty sure Weir didn’t intend this novel to be a metaphor but it definitely works well as one of the limited resources available on Earth and the necessity of optimizing their use, collecting and disposal. Resources on Earth seem infinite, or they at least they did back when the industrial revolution started.

I guess the point is that sustainability goes hand in hand with using the least resources to get new ones as well as with avoiding their waste. I think one must agree that Chemistry, like no other science, has shaped our world for better and worse.

I haven’t rambled on sustainability in a while. Feels bad. Must be the winter.

A personal artistic impression of the CompChem Landscape 


In a nutshell, computational chemistry models are about depicting, reproducing and predicting the electronic-based molecular reality. I had this conversation with my students last week and at some point I drew a parallel between them and art in terms of how such reality is approached.

Semi empirical methods
Prehistoric wall paintings depict a coarse aspect of reality without any detail but nevertheless we can draw some conclusions from the images. In the most sophisticated of these images, the cave paintings in Altamira, we can discern a bison, or could it be a bull? but definitely not a giraffe nor a whale, most in the same way Hückel´s method provides an ad hoc picture of π electron density without any regard of the σ portion of the electron density or the conformational possibilities (s-cis and s-trans 1,3-butadiene have the same Hückel description).

More sophisticated semi-empirical Hamiltonians like PM3 or PM6 have better parametrizations and hence yield better results. We are still replacing a lot of information for experimental or adjusted parameters but we still cannot truly adopt it as truthful. Take this pre-medieval painting of one of the first Kings of England, Aelred the Unready. It is, by today standards, a good children´s drawing and not a royal portrait, we now see more detail and can discern many more features yielding a better description of a human figure than those found in Altamira or Egypt.

Ethelred_the_Unready

Æthelred the Unready King of England ca. 1000 BC

 

Hartree-Fock
HF is the simplest of ab initio methods, meaning that no experimental results or adjustable parameters are introduced. Even more so, from the HF equations for a multi-electron system that complies with Pauli’s exclusion principle the exchange operator arises as a new quantum feature of matter with no classical analogue. Still, there are some shortcomings. Correlation energy is disregarded and most results vary according to the basis set employed. Take the impressionist movement, specially in France: In Monet´s Lady with Umbrella we have a more complicated composition, we observe many more features and although we have a better description of color composition some details, like her face, remain obscure. The impressionists are characterized by their broad strokes, the thicker the strokes the harder it is to observe details similar to what happens in HF when we change from a small to a large basis set, respectively.

Claude_Monet_023

Woman with a parasol – Her face or the identity of the flowers at her feet are indistinguishable yet we might be safe to say its springtime.

CI (Configurations Interaction)
Extension of HF to a multi-reference method yields better results. In CI we take the original guess wavefunction -as expressed through a Slater Determinant- and extend it with one or many more wavefunctions; thus a linear combination of Slater Determinants gives rise to a broader description of the ground state because other electronic configurations are involved to include more details like the ionic and covalent pictures (configurations). The more terms we include the more real the results feel. If we take classical figurative paintings we have a similar result; most of these paintings are constituted of many elements and the more realistically each element is captured the more real the whole composition looks even if some are just merely indicated.

Flaming_June,_by_Frederic_Lord_Leighton_(1830-1896)

Flaming June by Lord Leighton – Extreme details on the fabrics and the sea in the background makes us oblivious to the less detailed foot

CCSD(T) full-CI, CASPT2

In Edwards Much’s the scream, we might think we have lost some information again and went back to impressionism but we know this is actually an expressionist painting; we can now not only observe details of the figurative portion of the image but Munch has captured his subject´s fear in the form of distorsions on the subjective reality. In this way, CCSD(T), full-CI and CASPT2 methods provide a description of the ground as well as the excited states which -in experimental reality- are only accessed through a perturbation of the elecron density by electromagnetic radiation. Something resembling radiation has perturbated the subject in The Scream rendering him frightened and wondering how to return to his ground state or if such thing will be even possible.

The_Scream

The Scream by Edward Munch – what sort of perturbation got this guy’s fears out?

 

Density Functional Methods

At least due to its widespread use, DFT has risen as the preferred method. One of the reasons behind its success is the reduced computing time when compared to previous ab initio methods. So DFT is pretty much like photography, in which reality is captured in full but only apparently after selecting a given lens, an exposition, a filter, shutter speed and the occasional Photoshop for correcting issues such as aliasing. In photography, as in DFT, all details concerning the procedure or method for capturing an uncanny reproduction of reality must be stated in every case for reproduction purposes.

Now, in the end it all comes down to Magritte’s Pipe. Ceci n’est pas une pipe -or, ‘this is not a pipe’- reminds us that painting as with modeling we don’t get reality but rather a depiction of it. In this famous painting we look at an image that in our heads resembles that of a pipe but we cannot grab it, fill it with tobacco and smoke it.

MagrittePipe

This isn’t even Magritte’s painting! Let alone a pipe

The image above is a digital file, which translated becomes a scaled reproduction of an image painted by Magritte in which we see the 2D projection of the image of an object that reminds us of a pipe. In fact, the real name of this work is The Treachery of Images, definitely quite an epistemology problem on perception and knowledge but before I get too metaphysical I should finish this post.

Can you find where cubism or surrealism should be placed? with MPn methods, perhaps?

On Being Scooped… And Worse Things


It was your idea. You had it. Or did it have you? But suddenly, you see it wrapped around someone else’s words. You read and gasp in denying shock. This can’t be! You read again trying to find your mistake, it is clearly a mistake on your part; to find it, you search for differences, preferably major ones that reveal that the identity of this idea is different to yours. You hope to just be mistaking it for yours. The wording is different, of course, you would have emphasized it differently, the way it deserved to be emphasized. But nevertheless its a mistreated version of yours. No matter what, this was yours. Was. Heartbroken, you try to save some face, by treating it differently; by treating it better!; by tending to those bits this third party is neglecting; by dumping it and getting a new and better one. You were so close. All in vain, for the fact is that this idea is no longer just yours, it seduced someone else’s mind and got brought to life by swifter hands. Now forever they will remain bound together as two celestial bodies are bound by gravity in the marriage of scientific annals, under the complicit auspice of editors and reviewers. Yes. You were the last to know this went on. It once made you feel so special, proud of your sparkling originality and your long hard work, brilliant even, but now you feel idle and exposed while in the dark.

You wish that at least you were perceived as a fool, as a laughing stock or even as an intellectual cuckold! But you are left worse than that: You are left with nothing. Empty handed. A runner up at best or part of the despised ‘me-too‘ kind, but only if you manage to get something out there at which the public scrutiny can roll their eyes. Still, that would be indeed better than having nothing to show for after all those long hours of shared intimacy with this idea. Angrily, you decide to blame others: technicians for delaying experiments; your collaborators for delaying revisions; your students for delaying data, and even the head of the department, maybe just for being other than yourself. You read again. The idea, no longer yours alone, stares back at you; no amount of hatred can change that. And then you wonder if you could have possible been on the other side before? You hope you have, for that means you are ahead in the game, but like in any game, sometimes you loose. Could your mind have been the seducing one before? You hope it has, for if it hasn’t it means you are playing alone in a corner of no interest to anyone, and what fun is that? What fun is a game in which you cannot win?

You mend fences. You accept that for this time someone was lucky but soon luck will come back and you will seduce other ideas; your hands will bring them to life and you will successfully collect the recognition for it, no matter how little the victory. Affairs with new ideas will come. Luck will come back. And it will come back to find you busily working or will not come back at all.

Science in the World Cup


So the World Cup is once again on top of us. I’m not a Football (Soccer) enthusiast but I’ve got to admit that the expectation of such a large and widely covered event is pretty contagious. This year, however, I’m very excited about the inaugural kick-off ceremony because a paraplegic teen will be the one to set the ball in motion, thanks to the use of an exoskeleton developed by the illustrious Brazilian researcher, Dr. Miguel Nicolelis, this patient will not only walk again but also perform a feat of equilibrium: kicking a football. More impressive than the exoskeleton itself is the brain-computer-machine interface since the patient will control the entire process by himself. Miguel Nicolelis is widely known and highly regarded in the scientific community; I’m not sure if he is that famous outside academia, but if he isn’t, he should be. The natural question about Dr. Nicolelis is what is he? Is he a robotics engineer? a neurologist? a programmer? a physician? The answer could be no other than ‘all of the above‘.

And even more impressive than all that, if that’s even possible, is the fact that this huge achievement of technology is presented at one of the most viewed sporting events on the planet. Brazilian organizers could have selected many things to kick-off this event: From Adriana Lima to Pelé; from a Samba line to aboriginal Amazonian people, but instead they chose to go with a scientific and technological breakthrough achieved by one of their own. I wonder if this is a way to tell the world they are interested in investing in science and technology as a way to pave the way of their economical and social development. Brazil is currently regarded as a fast growing nation economically although the social disparity seems to be still quite large. The message I’m getting, at least in principle, is that Brazil is a modern nation with high regard for scientific development on which they will rely their future.

Kudos to the Brazilian organizers who thought of placing this large scientific breakthrough in a sporting event, proving that this world should become boundless and the way to do it is through science.

Goodbye 2013, welcome 2014!


Another year is almost done and as I write my annual report I realize this year has had several milestones for me as a researcher, most of which got recorded in this blog.

I published three papers in peer reviewed journals, one of which actually made the cover of J. Inclusion Phenomena, the other two were published in J. Phys. Chem. C and Eur. J. Inorg. Chem.; two more papers are currently under the reviewing process, one of which is further down the line in a journal whose title I dare not speak for fear of jinxing it! A small article on computational chemistry basics, entitled “Chemistry without Flasks” for a magazine edited by the National Council for Research and Technology (CONACyT) was also published early this year; during the summer we had the visit of quite a few internship students who got gather some data despite my absence; my more regular students, Maru and Howard presented one poster each at the National Congress of Chemistry organized by the Mexican Chemical Society, and Howard also presented another poster at the Mexican Reunion of Theoretical Physical Chemistry; Maru wrote and defended her thesis in May, which makes her the first student ever to graduate from my research group; I participated once again as a juror of the Mexican Science and Engineering Fair;  and last but not least I got a promotion at the National System of Researchers (SNI).

New immediate challenges lie ahead and I shall face them rationally and passionately.

These are small accomplishments for larger research groups, I know, but I’m truly happy to see how our combined efforts, along with the support of the National Autonomous University of Mexico and the Institute of Chemistry, are slowly paying off! One can only hope the growth curve is not linear but exponential.

Thanks to every reader who has interacted with me through this blog; thanks for your comments, ratings, sharing and ‘likes’. May you all have a happy holiday season, winter break or New Year party, whatever it is you get to do these days!

Joaquín

Negotiations gone wrong and other recent scandals


About a month ago my wife and I got invited by our good friend Dr. Ruperto Fernandez (his PhD is in transport logistics and engineering) to his final presentation for a course in managerial skills he’d taken for over six months, and while I wasn’t all that thrilled about waking up at 8 AM on a Saturday, I went to cheer my good friend and show him my sleepy support. His presentation dealt with negotiations and the required skills to master them, and while he agreed that there is a huge amount of talent involved in being a good negotiator, he also pointed out that some basic knowledge of the procedure can go a long way in helping us with little to no talent in achieving the best possible outcome. Basically, a negotiation involves the agreement between a person with something which another person wants; meeting both parties expectations at the fullest extent possible is the ideal endpoint for an iterative give-and-take between them. Or so it goes.

Recently a scandal that involved the biology freelance blogger DNLee, who blogs for Scientific American with the column The Urban Scientist, took place: DNLee was asked by Biology-Online.org to write for them. Then the negotiation started; she had something the editors wanted: her texts. She agreed to do it and presented her fee (second part of the negotiation process: “I got what you want and here is what I ask in return for it“), instead of having an offer made (third part of the negotiation process: “ok, that is what you want but this is what I can give you“) the blogger got a nasty message, which I believe maybe was intended to elicit a response to better accommodate the editor’s demands but that was nothing more than a plain nasty insult: The editor asked if she was the urban scientist or the urban whore (end of negotiation; nobody got anything. Furthermore, feelings were hurt, reputations questioned and the door for future negotiations between both parties was shut completely). If the editor was unable to pay any fee at all then the editor should have tried to convince the blogger of participating for free; I would have offered her a bigger space than a regular blogger, or maybe even invited her to participate as an editor. I’m not sure they have some sort of business model but something could have been arranged. Had this negotiation not met at any point in the middle then a polite thank you could have left the door open for a future time. DNLee has a reputation that allows her to charge for her writings, had it been me, I’d probably had done it for free but because I need more exposure than her who is already famous. Internet support came promptly and hard as can be seen here and here, not that it wasn’t called for, of course!

But the issue, sadly, didn’t end there, DNLee wrote about this in her blog at SciAm, but the post was later on deleted by the editors. Dr. Mariette DiChristina tweeted that the post wasn’t related to science so it didn’t fit in the site. Pressure in blogs and other social networks prompted SciAm to place the article back on the site. Click here to go to the post.

Calling someone a whore is simply unacceptable.

During his presentation, my friend Dr. Ruperto Fernandez, talked about a negotiation he had with a potential employer. According to his account of the process, it ended quite swiftly when he was offered a much lower salary than the one he currently earns. He said the offer had some good points that could have made him accept even 5 to 10% less income respect to his current salary, but much less than that would not help him cover the bills and that was a total deal-breaker. But the talk didn’t end there, some other joint projects were laid for them to work on together and the door is still open for the future when they may be able to match my friend’s expectations as biology-online should have done with DNLee.

It has been a rough couple of weeks for the Scientific American community; first this and now the leaving of a great science writer, Bora Zivcovic whose misconduct has forced his exit out of the popular magazine. So now the aftermath for both issues remains to be seen. Sexism, though, could be found to be a common denominator in both cases: one was a victim of it, the other one is guilty of inflicting it through various instances of sexual harassment. Should this mean that biology-online, Bora Zivcovic and the affiliated-to-the-two-previous parties, the Scientific American Magazine, are to be deemed as unworthy? I hardly think so. None of us is close to sanctity and we all make mistakes, some of them willingly and other unwillingly but we are accountable for each and every one of them nonetheless; but at the same time we should also be able to separate both sides of each story and keep the best of each side while keeping a close eye (and even a loud mouth) about the wrong in each side.

I wish nothing but the best to every person involved in any of these recent events. Why is it so hard for people to just ‘play nice‘? I’ve heard many times this world would be a better place if we cared more for each other, but sometimes it seems that its actually the opposite; that this world would be be better if we didn’t care so much: if we didn’t care about the color of our skin; our gender; our nationality or ethnicity; our sexual orientation; our social status. This brings me back yet again to that presentation by Dr. Fernandez, where he was asked to describe the way he was perceived by others at his workplace and he said he didn’t quite enjoy social interactions so he is perceived as serious and aloof but was always willing to join a new project, so when reached out for one of these he’s all smiles and work. Shouldn’t we all back off a little bit from each other from time to time?

My take on GMO’s


September’s issue of Scientific American is all about food; food and food science, that is. In it, there are a couple of articles on Genetically Modified Organisms (GMO’s) and there is also this blog post in their website being in favor of GMO’s, and I for one, stand by them. There is a global science illiteracy problem going on which accounts for the fear and misinformation most people get on important issues and the fear against GMO’s is one of them and a particularly disturbing one since it deals with a primal necessity of mankind, one that cannot be disregard at any time: Food.

I think when lay people hear GMO immediately think of some sort of Frankenstein plant or some other horror movie monster. For some reason people think technology=good and food=good but food-through-technology=really-bad. Of course we should be weary of what we put on our tables but in order to be weary we first must be thoroughly informed. Us people in favor of controlled GMO technology tend to give these boring arguments on DNA and vectors and so on while the opponents gather more fans with the more alluring image of the Franken-corn! Let me use a real life example to start this discussion

Let me use a human example: My wife has an amazing health. She gets the flu once every year (if at all!); gets knocked down for a couple of days and that’s it! she is back on her feet working and partying the following 363 days of the year. I, on the other hand, am not that lucky. I’get congested very easily with changes in temperature, so every time we go swimming (twice a week, if at all) I end up sneezing my lungs out afterwards. My gastrointestinal system is also very faulty, I easily get… well, you get the picture. Whenever we have kids, it would be easy to presume that they will be not as healthy as their mother but not as sickly as their old man, but something rather in the middle. It could also be the case they were entirely like one of us in the health department, who knows! Lets say they are in the middle. We have now performed a genetic modification which improves my genetic traits. My hypothetical kid is now an improved version of myself but not so much of their mom’s, but definitely not a clone of neither! These hypothetical kids will be humans, just like their mom and I. The key in the above hypothetical procedure is the statistical variability in it. We should have many kids so around half of them had an intermediate health (assuming no genetic trait is more dominant than the other). With plants is the same thing: You might have some corn species with huge grains but low resistance to droughts while other species might need less water to fully grow although the product is not as good as the former. When combined, both species will yield, hopefully, an intermediate species which can be iteratively improved until we achieve corn with big grains and low water demands.

What we cannot do now, is to have these hypothetical kids reproduce with one of their parents as to yield an even healthier human! But when it comes to plants, such as corn or wheat, incest is not an issue. Pollinationcross pollination and plant grafting do exactly this by combining the traits of some species with another’s. Almost no food found in any market has not gone through this process through the last couple hundred years. But this Higher Power (I mean of course farmers and botanists) that has yield this delicious and nutritious vegetables available to us, have worked on a trial and error fashion. Nowadays we can be more precise on what traits we want our vegetables to have from one generation to the next by using genetic engineering techniques. With GMO’s we can create more food resources with a lower energy investment, a key issue in sustainable development of any nation; we can also address some nutrition deficiencies just like it was done in The Phillipines where beta-carotene (the yellow pigment in oranges and carrots) was introduced into rice in order to attack a Vitamin-A deficiency in kids that was rendering them blind.

Europe doesn’t allow the sale of any processed food containing GMO’s while in the US almost no processed food doesn’t include, at any level of their production, a GMO ingredient, but the reason behind this is because in Europe the debate ended before it began while in the US there is still debate on whether to add a label specifying the presence of GMO’s on every food product. The inclusion of such label, at this stage, would only add up to people’s fear of GMO’s because it would be perceived as a ‘warning‘ instead of just as ‘information‘.  Scientific literacy is urgent not just so a good decision is taken but to start the debate! At this point the only thing keeping those labels away from supermarket products is the billions of dollars in lobbying by big companies such as Monsanto (which is not the devil, please put away your crucifixes) and DuPont. But the issue shouldn’t be about money, it should be about the way scientific reasoning should steer the decision making process in this and any other controversial issue.

The potential benefits of GMO are central to the sustainable life and development of our nations, so instead of fearing them lets understand them first.

%d bloggers like this: