# Blog Archives

## Percentage of Molecular Orbital Composition – G09,G16

Canonical Molecular Orbitals are–by construction–delocalized over the various atoms making up a molecule. In some contexts it is important to know how much of any given orbital is made up by a particular atom or group of atoms, and while you could calculate it by hand given the coefficients of each MO in terms of every AO (or basis set function) centered on each atom there is a straightforward way to do it in Gaussian.

If we’re talking about ‘dividing’ a molecular orbital into atomic components, we’re most definitely talking about population analysis calculations, so we’ll resort to the pop keyword and the orbitals option in the standard syntax:

`#p M052x/cc-pVDZ pop=orbitals`

This will produce the following output right after the Mulliken population analysis section:

```Atomic contributions to Alpha molecular orbitals:
Alpha occ 140 OE=-0.314 is Pt1-d=0.23 C38-p=0.16 C31-p=0.16 C36-p=0.16 C33-p=0.15
Alpha occ 141 OE=-0.313 is Pt1-d=0.41
Alpha occ 142 OE=-0.308 is Cl2-p=0.25
Alpha occ 143 OE=-0.302 is Cl2-p=0.72 Pt1-d=0.18
Alpha occ 144 OE=-0.299 is Cl2-p=0.11
Alpha occ 145 OE=-0.298 is C65-p=0.11 C58-p=0.11 C35-p=0.11 C30-p=0.11
Alpha occ 146 OE=-0.293 is C58-p=0.10
Alpha occ 147 OE=-0.291 is C22-p=0.09
Alpha occ 148 OE=-0.273 is Pt1-d=0.18 C11-p=0.12 C7-p=0.11
Alpha occ 149 OE=-0.273 is Pt1-d=0.18
Alpha vir 150 OE=-0.042 is C9-p=0.18 C13-p=0.18
Alpha vir 151 OE=-0.028 is C7-p=0.25 C16-p=0.11 C44-p=0.11
Alpha vir 152 OE=0.017 is Pt1-p=0.10
Alpha vir 153 OE=0.021 is C36-p=0.15 C31-p=0.14 C63-p=0.12 C59-p=0.12 C38-p=0.11 C33-p=0.11
Alpha vir 154 OE=0.023 is C36-p=0.13 C31-p=0.13 C63-p=0.11 C59-p=0.11
Alpha vir 155 OE=0.027 is C65-p=0.11 C58-p=0.10
Alpha vir 156 OE=0.029 is C35-p=0.14 C30-p=0.14 C65-p=0.12 C58-p=0.11
Alpha vir 157 OE=0.032 is C52-p=0.09
Alpha vir 158 OE=0.040 is C50-p=0.14 C22-p=0.13 C45-p=0.12 C17-p=0.11
Alpha vir 159 OE=0.044 is C20-p=0.15 C48-p=0.14 C26-p=0.12 C54-p=0.11
```

Alpha and Beta densities are listed separately only in unrestricted calculations, otherwise only the first is printed. Each orbital is listed sequentially (occ = occupied; vir = virtual) with their energy value (OE = orbital energy) in atomic units following and then the fraction with which each atom contributes to each MO.

By default only the ten highest occupied orbitals and ten lowest virtual orbitals will be assessed, but the number of MOs to be analyzed can be modified with orbitals=N, if you want to have all orbitals analyzed then use the option AllOrbitals instead of just orbitals. Also, the threshold used for printing the composition is set to 10% but it can be modified with the option ThreshOrbitals=N, for the same compound as before here’s the output lines for HOMO and LUMO (MOs 149, 150) with ThreshOrbitals set to N=1, i.e. 1% as occupation threshold (ThreshOrbitals=1):

```Alpha occ 149 OE=-0.273 is Pt1-d=0.18 N4-p=0.08 N6-p=0.08 C20-p=0.06 C13-p=0.06 C48-p=0.06 C9-p=0.06 C24-p=0.05 C52-p=0.05 C16-p=0.04 C44-p=0.04 C8-p=0.03 C15-p=0.03 C17-p=0.03 C45-p=0.02 C46-p=0.02 C18-p=0.02 C26-p=0.02 C54-p=0.02 N5-p=0.01 N3-p=0.01
Alpha vir 150 OE=-0.042 is C9-p=0.18 C13-p=0.18 C44-p=0.08 C16-p=0.08 C15-p=0.06 C8-p=0.06 N6-p=0.04 N4-p=0.04 C52-p=0.04 C24-p=0.04 N5-p=0.03 N3-p=0.03 C46-p=0.03 C18-p=0.03 C48-p=0.02 C20-p=0.02```

The fragment=n label in the coordinates can be used as in BSSE Counterpoise calculations and the output will show the orbital composition by fragments with the label "Fr", grouping all contributions to the MO by the AOs centered on the atoms in that fragment.

As always, thanks for reading, sharing, and rating. I hope someone finds this useful.

## Orbital Contributions to Excited States

This is a guest post by our very own Gustavo “Gus” Mondragón whose work centers around the study of excited states chemistry of photosynthetic pigments.

When you’re calculating excited states (no matter the method you’re using, TD-DFT, CI-S(D), EOM-CCS(D)) the analysis of the orbital contributions to electronic transitions poses a challenge. In this post, I’m gonna guide you through the CI-singles excited states calculation and the analysis of the electronic transitions.

I’ll use adenine molecule for this post. After doing the corresponding geometry optimization by the method of your choice, you can do the excited states calculation. For this, I’ll use two methods: CI-Singles and TD-DFT.

The route section for the CI-Singles calculation looks as follows:

`%chk=adenine.chk%nprocshared=8%mem=1Gb#p CIS(NStates=10,singlets)/6-31G(d,p) geom=check guess=read scrf=(cpcm,solvent=water)adenine excited states with CI-Singles method0 1--blank line--`

I use the same geometry from the optimization step, and I request only for 10 singlet excited states. The CPCP implicit solvation model (solvent=water) is requested. If you want to do TD-DFT, the route section should look as follows:

`%chk=adenine.chk%nprocshared=8%mem=1Gb#p FUNCTIONAL/6-31G(d,p) TD(NStates=10,singlets) geom=check guess=read scrf=(cpcm,solvent=water)adenine excited states with CI-Singles method0 1--blank line--`

Where FUNCTIONAL is the DFT exchange-correlation functional of your choice. Here I strictly not recommend using B3LYP, but CAM-B3LYP is a noble choice to start.

Both calculations give to us the excited states information: excitation energy, oscillator strength (as f value), excitation wavelength and multiplicity:

Excitation energies and oscillator strengths:

` Excited State   1:      Singlet-A      6.3258 eV  196.00 nm  f=0.4830  <S**2>=0.000      11 -> 39        -0.00130      11 -> 42        -0.00129      11 -> 43         0.00104      11 -> 44        -0.00256      11 -> 48         0.00129      11 -> 49         0.00307      11 -> 52        -0.00181      11 -> 53         0.00100      11 -> 57        -0.00167      11 -> 59         0.00152      11 -> 65         0.00177`

The data below corresponds to all the electron transitions involved in this excited state. I have to cut all the electron transitions because there are a lot of them for all excited states. If you have done excited states calculations before, you realize that the HOMO-LUMO transition is always an important one, but not the only one to be considered. Here is when we calculate the Natural Transition Orbitals (NTO), by these orbitals we can analyze the electron transitions.

For the example, I’ll show you first the HOMO-LUMO transition in the first excited state of adenine. It appears in the long list as follows:

35 -> 36         0.65024

The 0.65024 value corresponds to the transition amplitude, but it doesn’t mean anything for excited state analysis. We must calculate the NTOs of an excited state from a new Gaussian input file, requesting from the checkpoint file we used to calculate excited states. The file looks as follows:

`%Oldchk=adenine.chk%chk=adNTO1.chk%nproc=8%mem=1Gb#p SP geom=allcheck guess=(read,only) density=(Check,Transition=1) pop=(minimal,NTO,SaveNTO)`

I want to say some important things right here for this last file. See that no level of theory is needed, all the calculation data is requested from the checkpoint file “adenine.chk”, and saved into the new checkpoint file “adNTO1.chk”, we must use the previous calculated density and specify the transition of interest, it means the excited state we want to analyze. As we don’t need to specify charge, multiplicity or even the comment line, this file finishes really fast.

After doing this last calculation, we use the new checkpoint file “adNTO1.chk” and we format it:

`formchk -3 adNTO1.chk adNTO1.fchk`

If we open this formatted checkpoint file with GaussView, chemcraft or the visualizer you want, we will see something interesting by watching he MOs diagram, as follows:

We can realize that frontier orbitals shows the same value of 0.88135, which means the real transition contribution to the first excited state. As these orbitals are contributing the most, we can plot them by using the cubegen routine:

`cubegen 0 mo=homo adNTO1.fchk adHOMO.cub 0 h`

This last command line is for plotting the equivalent as the HOMO orbital. If we want to plot he LUMO, just change the “homo” keyword for “lumo”, it doesn’t matter if it is written with capital letters or not.

You must realize that the Natural Transition Orbitals are quite different from Molecular Orbitals. For visual comparisson, I’ve printed also the molecular orbitals, given from the optimization and from excited states calculations, without calculating NTOs:

These are the molecular frontier orbitals, plotted with Chimera with 0.02 as the isovalue for both phase spaces:

The frontier NTOs look qualitatively the same, but that’s not necessarily always the case:

If we analyze these NTOs on a hole-electron model, the HOMO refers to the hole space and the LUMO refers to the electron space.

Maybe both orbitals look the same, but both frontier orbitals are quite different between them, and these last orbitals are the ones implied on first excited state of adenine. The electron transition will be reported as follows:

If I can do a graphic summary for this topic, it will be the next one:

NTOs analysis is useful no matter if you calculate excited states by using CIS(D), EOM-CCS(D), TD-DFT, CASSCF, or any of the excited states method of your election. These NTOs are useful for population analysis in excited states, but these calculations require another software, MultiWFN is an open-source code that allows you to do this analysis, and another one is called TheoDORE, which we’ll cover in a later post.

## Natural Transition Orbitals (NTOs) Gaussian

The canonical molecular orbital depiction of an electronic transition is often a messy business in terms of a ‘chemical‘ interpretation of ‘which electrons‘ go from ‘which occupied orbitals‘ to ‘which virtual orbitals‘.

Natural Transition Orbitals provide a more intuitive picture of the orbitals, whether mixed or not, involved in any hole-particle excitation. This transformation is particularly useful when working with the excited states of molecules with extensively delocalized chromophores or multiple chromophoric sites. The elegance of the NTO method relies on its simplicity: separate unitary transformations are performed on the occupied and on the virtual set of orbitals in order to get a localized picture of the transition density matrix.

 R. L. Martin, J. Chem. Phys., 2003, DOI:10.1063/1.1558471.

In Gaussian09:
After running a TD-DFT calculation with the keyword TD(Nstates=n) (where n = number of states to be requested) we need to take that result and launch a new calculation for the NTOs but lets take it one step at a time. As an example here’s phenylalanine which was already optimized to a minimum at the B3LYP/6-31G(d,p) level of theory. If we take that geometry and launch a new calculation with the TD(Nstates=40) in the route section we obtain the UV-Vis spectra and the output looks like this (only the first three states are shown):

```Excitation energies and oscillator strengths:

Excited State 1: Singlet-A 5.3875 eV 230.13 nm f=0.0015 <S**2>=0.000
42 -> 46 0.17123
42 -> 47 0.12277
43 -> 46 -0.40383
44 -> 45 0.50838
44 -> 47 0.11008
This state for optimization and/or second-order correction.
Total Energy, E(TD-HF/TD-KS) = -554.614073682
Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State 2: Singlet-A 5.5137 eV 224.86 nm f=0.0138 <S**2>=0.000
41 -> 45 -0.20800
41 -> 47 0.24015
42 -> 45 0.32656
42 -> 46 0.10906
42 -> 47 -0.24401
43 -> 45 0.20598
43 -> 47 -0.14839
44 -> 45 -0.15344
44 -> 47 0.34182

Excited State 3: Singlet-A 5.9254 eV 209.24 nm f=0.0042 <S**2>=0.000
41 -> 45 0.11844
41 -> 47 -0.12539
42 -> 45 -0.10401
42 -> 47 0.16068
43 -> 45 -0.27532
43 -> 46 -0.11640
43 -> 47 0.16780
44 -> 45 -0.18555
44 -> 46 -0.29184
44 -> 47 0.43124```

The oscillator strength is listed on each Excited State as “f” and it is a measure of the probability of that excitation to occur. If we look at the third one for this phenylalanine we see f=0.0042, a very low probability, but aside from that the following list shows what orbital transitions compose that excitation and with what energy, so the first line indicates a transition from orbital 41 (HOMO-3) to orbital 45 (LUMO); there are 10 such transitions composing that excitation, visualizing them all with canonical orbitals is not an intuitive picture, so lets try the NTO approach, we’re going to take excitation #10 for phenylalanine as an example just because it has a higher oscillation strength:

```%chk=Excited State 10: Singlet-A 7.1048 eV 174.51 nm f=0.3651 <S**2>=0.000
41 -> 45 0.35347
41 -> 47 0.34685
42 -> 45 0.10215
42 -> 46 0.17248
42 -> 47 0.13523
43 -> 45 -0.26596
43 -> 47 -0.22995
44 -> 46 0.23277```

Each set of NTOs for each transition must be calculated separately. First, copy you filename.chk file from the TD-DFT result to a new one and name it after the Nth state of interest as shown below (state 10 in this case). NOTE: In the route section, replace N with the number of the excitation of interest according to the results in filename.log. Run separately for each transition your interested in:

```#chk=state10.chk

#p B3LYP/6-31G(d,p) Geom=AllCheck Guess=(Read,Only) Density=(Check,Transition=N) Pop=(Minimal,NTO,SaveNTO)

0 1
--blank line--```

By requesting SaveNTO, the canonical orbitals in the state10.chk file are replaced with the NTOs for the 10th excitation, this makes it easier to plot since most visualizers just plot whatever set of orbitals they read in the chk file but if they find the canonical MOs then one would need to do some re-processing of them. This is much more straightforward.

Now we format our chk files into fchk with the formchk utility:

`formchk -3 filename.chk filename.fchkformchk -3 state10.chk state10.fchk`

If we open filename.fchk (the file where the original TD-DFT calculation is located) with GaussView we can plot all orbitals involved in excited state number ten, those would be seven orbitals from 41 (HOMO-3) to 47 (LUMO+2) as shown in figure 1. Figure 1. Canonical orbitals involved in the 10th excited state according to the TD-DFT calculation

If we now open state10.fchk we see that the numbers at the side of the orbitals are not their energy but their occupation number particular to this state of interest, so we only need to plot those with highest occupations, in our example those are orbitals 44 and 45 (HOMO and LUMO) which have occupations = 0.81186; you may include 43 and 46 (HOMO-1 and LUMO+1, respectively) for a much more complete description (occupations = 0.18223) but we’re still dealing with 4 orbitals instead of 7. Figure 2. Natural Transition Orbitals for Phenylalanine. Orbital 44 (particle) and Orbital 45 (hole) exhibit the largest occupations for Excited State No. 10

The NTO transition 44 -> 45 is far easier to conceptualize than all the 10 combinations given in the canonical basis from the direct TD-DFT calculation. TD-DFT provides us with the correct transitions, NTOs just paint us a picture more readily available to the chemist mindset.

NOTE: for G09 revC and above, the %OldChk option is available, I haven’t personally tried it but using it to specify where the excitations are located and then write the NTOs of interest into a new chk file in the following way, thus eliminating the need of copying the original chk file for each state:

`%OldChk=filename.chk%chk=stateN.chk`

NTOs are based on the Natural Hybrid orbitals vision by Löwdin and others, and it is said to be so straightforward that it has been re-discovered from time to time. Be that as it may, the NTO visualization provides a much clearer vision of the excitations occurring during a TD calculation.

Thanks for reading, stay home and stay safe during these harsh days everyone. Please share, rate and comment this and other posts.

## No, seriously, why can’t orbitals be observed?

The concept of electronic orbital has become such a useful and engraved tool in understanding chemical structure and reactivity that it has almost become one of those things whose original meaning has been lost and replaced for a utilitarian concept, one which is not bad in itself but that may lead to some wrong conclusions when certain fundamental facts are overlooked.

Last week a wrote -what I thought was- a humorous post on this topic because a couple of weeks ago a viewpoint in JPC-A was published by Pham and Gordon on the possibility of observing molecular orbitals through microscopy methods, which elicited a ‘seriously? again?‘ reaction from me, since I distinctly remember the Nature article by Zuo from the year 2000 when I just had entered graduate school. The article is titled “direct observation of d-orbital holes.” We discussed this paper in class and the discussion it prompted was very interesting at various levels: for starters, the allegedly observed d-orbital was strikingly similar to a dz2, which we had learned in class (thanks, prof. Carlos Amador!) that is actually a linear combination of d(z2-x2) and d(z2-y2) orbitals, a mathematical -lets say- trick to conform to spectroscopic observations.

Pham and Gordon are pretty clear in their first paragraph: “The wave function amplitude Ψ*Ψ is interpreted as the probability density. All observable atomic or molecular properties are determined by the probability and a corresponding quantum mechanical operator, not by the wave function itself. Wave functions, even exact wave functions, are not observables.” There is even another problem, about which I wrote a post long time ago: orbitals are non-unique, this means that I could get a set of orbitals by solving the Schrödinger equation for any given molecule and then perform a unit transformation on them (such as renormalizing them, re-orthonormalizing them to get a localized version, or even hybridizing them) and the electronic density derived from them would be the same! In quantum mechanical terms this means that the probability density associated with the wave function internal product, Ψ*Ψ, is not changed upon unit transformations; why then would a specific version be “observed” under a microscope? As Pham and Gordon state more eloquently it has to do with the Density of States (DOS) rather than with the orbitals. Furthermore, an orbital, or more precisely a spinorbital, is conveniently (in math terms) separated into a radial, an angular and a spin component R(r)Ylm(θ,φ)σ(α,β) with the angular part given by the spherical harmonic functions Ylm(θ,φ), which in turn -when plotted in spherical coordinates- create the famous lobes we all chemists know and love. Zuo’s observation claim was based on the resemblance of the observed density to the angular part of an atomic orbital. Another thing, orbitals have phases, no experimental observation claims to have resolved those.

Now, I may be entering a dangerous comparison but, can you observe a 2? If you say you just did, well, that “2” is just a symbol used to represent a quantity: two, the cardinality of a set containing two elements. You might as well depict such quantity as “II” or “⋅⋅” but still cannot observe “a two”. (If any mathematician is reading this, please, be gentle.) I know a number and a function are different, sorry if I’m just rambling here and overextending a metaphor.

Pretending to having observed an orbital through direct experimental methods is to neglect the Born interpretation of the wave function, Heisenberg’s uncertainty principle and even Schrödinger’s cat! (I know, I know, Schrödinger came up with this gedankenexperiment in order to refute the Copenhagen interpretation of quantum mechanics, but it seems like after all the cat is still not out of the box!)

So, the take home message from the viewpoint in JPC is that molecular properties are defined by the expected values of a given wave function for a specific quantum mechanical operator of the property under investigation and not from the wave function itself. Wave functions are not observables and although some imaging techniques seem to accomplish a formidable task the physical impossibility hints to a misinterpretation of facts.

I think I’ll write more about this in a future post but for now, my take home message is to keep in mind that orbitals are wave functions and therefore are not more observable (as in imaging) than a partition function is in statistical mechanics.