Category Archives: Publications

Mg²⁺ Needs a 5th Coordination in Chlorophylls – New paper in IJQC


Photosynthesis, the basis of life on Earth, is based on the capacity a living organism has of capturing solar energy and transform it into chemical energy through the synthesis of macromolecules like carbohydrates. Despite the fact that most of the molecular processes present in most photosynthetic organisms (plants, algae and even some bacteria) are well described, the mechanism of energy transference from the light harvesting molecules to the reaction centers are not entirely known. Therefore, in our lab we have set ourselves to study the possibility of some excitonic transference mechanisms between pigments (chlorophyll and its corresponding derivatives). It is widely known that the photophysical properties of chlorophylls and their derivatives stem from the electronic structure of the porphyrin and it is modulated by the presence of Mg but its not this ion the one that undergoes the main electronic transitions; also, we know that Mg almost never lies in the same plane as the porphyrin macrocycle because it bears a fifth coordination whether to another pigment or to a protein that keeps it in place (Figure 1).

TOC_final

Figure 1 The UV-Vis spectra of BCHl-a changes with the coordination state

During our calculations of the electronic structure of the pigments (Bacteriochlorophyll-a, BChl-a) present in the Fenna-Matthews-Olson complex of sulfur dependent bacteria we found that the Mg²⁺ ion at the center of one of these pigments could in fact create an intermolecular interaction with the C=C double bond in the phytol fragment which lied beneath the porphyrin ring.

fig3

Figure 2 Mg points ‘downwards’ upon optimization, hinting to the interaction under study

 

This would be the first time that a dihapto coordination is suggested to occur in any chlorophyll and that on itself is interesting enough but we took it further and calculated the photophysical implications of having this fifth intramolecular dihapto coordination as opposed to a protein or none for that matter. Figure 3 shows that the calculated UV-Vis spectra (calculated with Time Dependent DFT at the CAM-B3LYP functional and the cc-pVDZ, 6-31G(d,p) and 6-31+G(d,p) basis sets). A red shift is observed for the planar configuration, respect to the five coordinated species (regardless of whether it is to histidine or to the C=C double bond in the phytyl moiety).

 

Fig6

Figure 3 CAMB3LYP UV-VIS spectra. Basis set left to right cc-PVDZ, 6-31G(d,p) and 6-31+G(d,p)

Before calculating the UV-Vis spectra, we had to unambiguously define the presence of this observed interaction. To that end we calculated to a first approximation the C-Mg Wiberg bond indexes at the CAM-B3LYP/cc-pVDZ level of theory. Both values were C(1)-Mg 0.022 and C(2)-Mg 0.032, which are indicative of weak interactions; but to take it even further we performed a non-covalent interactions analysis (NCI) under the Atoms in Molecules formalism, calculated at the M062X density which yielded the presence of the expected critical points for the η²Mg-(C=C) interaction. As a control calculation we performed the same calculation for Magnoscene just to unambiguously assign these kind of interactions (Fig 4, bottom).

Fig4.jpg

Figure 4 (a), (b) NCI analysis for Mg-(C=C) interaction compared to Magnesocene (c)

This research is now available at the International Journal of Quantum Chemistry. A big shoutout and kudos to Gustavo “Gus” Mondragón for his work in this project during his masters; many more things come to him and our group in this and other research ventures.

Advertisements

I’m putting a new blog out there


As if I didn’t have enough things to do I’m launching a new blog inspired by the #365papers hashtag on Twitter and the naturalproductman.wordpress.com blog. In it I’ll hopefully list, write a femto-review of all the papers I read. This new effort is even more daunting than the actual reading of the huge digital pile of papers I have in my Mendeley To-Be-Read folder, the fattest of them all. The papers therein wont be a comprehensive review of Comp.Chem. must-read papers but rather papers relevant to our lab’s research or curiosity.

Maybe I’ll include some papers brought to my attention by the group and they could do the review. The whole endeavor might flop in a few weeks but I want to give it a shot; we’ll see how it mutates and if it survives or not. So far I haven’t managed to review all papers read but maybe this post will prompt to do so if only to save some face. The domain of the new blog is compchemdigest.wordpress.com but I think it should have included the word MY at the beginning so as to convey the idea that it is only my own biased reading list. Anyway, if you’re interested share it and subscribe, those post will not be publicized.

Simulation of Raman Spectroscopy and crystal cell effects – Selenium Carboxylate Eur. J. Inorg. Chem.


Computing spectroscopic features of molecules is always an interesting challenge, specially when intermolecular contacts are into play. Take vibrational spectroscopy for instance, all the non-covalent interactions present in a solid will have an important effect on the the calculated frequencies and their intensities. However calculating the spectroscopical properties of a solid quickly becomes a daunting task.

My colleague and friend Dr. Vojtech Jancik asked me to calculate the Raman frequencies for a new compound: Selenoyl bis-carboxylate, which according to him was very hard to obtain due to the very nature of selenium. So we performed various calculations on the isolated molecule to reproduce the measured Raman spectrum but we soon realized that a calculation on the crystal cell was needed if we wanted to get a more thorough picture of the experiment.

The level of theory used was PBEPBE/LANL2DZ. Optimization of the title structure pointed to a low coordination capacity by carboxylate groups as evidenced by the longer Se -O-C=O distances and reduced Wiberg bond indexes. A blue shift was observed for all bands and so we calculated the Raman frequencies at the crystal structure which gave us a better correspondence between spectra. Finally we computed the Raman spectra for the full unit cell comprised of four molecules with which an excellent agreement was obtained (a scaling factor of 0.8 was used).

Unfortunately we failed to further extend this calculation to a larger system with four unit cells and 32 molecules apparently due to insufficient memory; the calculation just stalled and stopped without error after consuming its time in the queue. I’ll try to take a look into it some day.

https://vine.co/v/eaQOH57nADO/embed/simple?audio=1https://platform.vine.co/static/scripts/embed.js

You can read the whole story in: Synthesis and Crystal Structure of the First Selenonyl Bis(carboxylate) SeO2(O2CCH3)2
Lukas Richtera · Vojtech Jancik · Joaquín Barroso‐Flores · Petr Nykel · Jiri Touzin · Jan Taraba

European Journal of Inorganic Chemistry 06/2015; 2015(18):2923–2927. DOI:10.1002/ejic.201500271
https://platform.vine.co/static/scripts/embed.js

Thanks for reading!

On Being Scooped… And Worse Things


It was your idea. You had it. Or did it have you? But suddenly, you see it wrapped around someone else’s words. You read and gasp in denying shock. This can’t be! You read again trying to find your mistake, it is clearly a mistake on your part; to find it, you search for differences, preferably major ones that reveal that the identity of this idea is different to yours. You hope to just be mistaking it for yours. The wording is different, of course, you would have emphasized it differently, the way it deserved to be emphasized. But nevertheless its a mistreated version of yours. No matter what, this was yours. Was. Heartbroken, you try to save some face, by treating it differently; by treating it better!; by tending to those bits this third party is neglecting; by dumping it and getting a new and better one. You were so close. All in vain, for the fact is that this idea is no longer just yours, it seduced someone else’s mind and got brought to life by swifter hands. Now forever they will remain bound together as two celestial bodies are bound by gravity in the marriage of scientific annals, under the complicit auspice of editors and reviewers. Yes. You were the last to know this went on. It once made you feel so special, proud of your sparkling originality and your long hard work, brilliant even, but now you feel idle and exposed while in the dark.

You wish that at least you were perceived as a fool, as a laughing stock or even as an intellectual cuckold! But you are left worse than that: You are left with nothing. Empty handed. A runner up at best or part of the despised ‘me-too‘ kind, but only if you manage to get something out there at which the public scrutiny can roll their eyes. Still, that would be indeed better than having nothing to show for after all those long hours of shared intimacy with this idea. Angrily, you decide to blame others: technicians for delaying experiments; your collaborators for delaying revisions; your students for delaying data, and even the head of the department, maybe just for being other than yourself. You read again. The idea, no longer yours alone, stares back at you; no amount of hatred can change that. And then you wonder if you could have possible been on the other side before? You hope you have, for that means you are ahead in the game, but like in any game, sometimes you loose. Could your mind have been the seducing one before? You hope it has, for if it hasn’t it means you are playing alone in a corner of no interest to anyone, and what fun is that? What fun is a game in which you cannot win?

You mend fences. You accept that for this time someone was lucky but soon luck will come back and you will seduce other ideas; your hands will bring them to life and you will successfully collect the recognition for it, no matter how little the victory. Affairs with new ideas will come. Luck will come back. And it will come back to find you busily working or will not come back at all.

%d bloggers like this: