Blog Archives

Stability of Unnatural DNA – @PCCP #CompChem


As is the case of proteins, the functioning of DNA is highly dependent on its 3D structure and not just only on its sequence but the difference is that protein tertiary structure has an enormous variety whereas DNA is (almost) always a double helix with little variations. The canonical base pairs AT, CG stabilize the famous double helix but the same cannot be guaranteed when non-canonical -unnatural- base pairs (UBPs) are introduced.

Imagen1

Figure 1

When I first took a look at Romesberg’s UBPS, d5SICS and dNaM (throughout the study referred to as X and Y see Fig.1) it was evident that they could not form hydrogen bonds, in the end they’re substituted naphtalenes with no discernible ways of creating a synton like their natural counterparts. That’s when I called Dr. Rodrigo Galindo at Utah University who is one of the developers of the AMBER code and who is very knowledgeable on matters of DNA structure and dynamics; he immediately got on board and soon enough we were launching molecular dynamics simulations and quantum mechanical calculations. That was more than two years ago.

Our latest paper in Phys.Chem.Chem.Phys. deals with the dynamical and structural stability of a DNA strand in which Romesberg’s UBPs are introduced sequentially one pair at a time into Dickerson’s dodecamer (a palindromic sequence) from the Protein Data Bank. Therein d5SICS-dNaM pair were inserted right in the middle forming a trisdecamer; as expected, +10 microseconds molecular dynamics simulations exhibited the same stability as the control dodecamer (Fig.2 left). We didn’t need to go far enough into the substitutions to get the double helix to go awry within a couple of microseconds: Three non-consecutive inclusions of UBPs were enough to get a less regular structure (Fig. 2 right); with five, a globular structure was obtained for which is not possible to get a proper average of the most populated structures.

X and Y don’t form hydrogen bonds so the pairing is pretty much forced by the scaffold of the rest of the DNA’s double helix. There are some controversies as to how X and Y fit together, whether they overlap or just wedge between each other and according to our results, the pairing suggests that a C1-C1′ distance of 11 Å is most stable consistent with the wedging conformation. Still much work is needed to understand the pairing between X and Y and even more so to get a pair of useful UBPs. More papers on this topic in the near future.

Unnatural DNA and Synthetic Biology


Ever since I read the highly praised article by Floyd Romesberg in Nature back in 2013 I got really interested in synthetic biology. In said article, an unnatural base pair (UBP) was not only inserted into a DNA double strand in vivo  but the organism was even able to reproduce the UBPs present in subsequent generations.

Imagen1

Romesberg’s Nucleosides. No Hydrogen bonding is formed between them!

Inserting new unnatural base pairs in DNA works a lot like editing a computer’s code. Inserting a couple UBPs in vitro is like inserting a comment; it wont make a difference but its still there. If the DNA sequence containing the UBPs can be amplified by molecular biology techniques such as PCR it means that a polymerase enzyme is able to recognize it and place it in site, this is equivalent to inserting a ‘hello world’ section into a working code; it will compile but it’s pretty much useless. Inserting these UBPs in vivo means that the organism is able to thrive despite the large deformation in a short section of its genetic code, but having it replicated by the chemical machinery of the nucleus is an amazing feat that only a few molecules could allow.

The ultimate goal of synthetic biology would be to find a UBP which codes effectively and purposefully during translation of DNA.This last feat would be equivalent to inserting a working subroutine in a program with a specific purpose. But not only could the use of UBPs serve for the purposes of expanding the genetic code from a quaternary (base four) to a senary (base six) system: the field of DNA origami could also benefit from having an expansion in the chemical and structural possibilities of the famous double helix; marking and editing a sequence would also become easier by having distinctive sections with nucleotides other than A, T, C and G.

It is precisely in the concept of double helix that our research takes place since the available biochemical machinery for translation and replication can only work on a double helix, else, the repair mechanisms get activated or the DNA will just stop serving its purpose (i.e. the code wont compile).

My good friend, Dr. Rodrigo Galindo and I have worked on the simulation of Romesberg’s UBPs in order to understand the underlying structural, dynamical and electronic causes that made them so successful and to possibly design more efficient UBPs based on a set of general principles. A first paper has been accepted for publication in Phys.Chem.Chem.Phys. and we’re very excited for it; more on that in a future post.

New paper in Computational and Theoretical Chemistry


I always get very happy to have a new paper out there! I find it exciting but most of all liberating since it makes you feel like your work is going somewhere but most of all that it is making its way ‘out there’; there is a strong feeling of validation, I guess.

Two very different families of calix[n]arenes (Fig 1) were tested as drug carriers for a very small molecule with a huge potential as a chemotherapeutic agent against Leukemia, namely, 3-phenyl-1H-[1]benzofuro[3,2-c]pyrazole a.k.a. GTP which has proven to be an effective in vitro Tyrosine Kinase III inhibitor. Having such a low molecular weight it is expected to have a very high excretion rate therefore the use of a carrier could increase its retention time and hence its activity. This time we considered n = 4, 5, 6 and 8 for the size of the cavities and R = -SO3H and -OEt as functional groups on the upper rim as to evaluate only a polar coordinating group and a non-polar non-coordinating one since GTP offers two H-bond acceptor sites and one H-bond donor one along the π electron density that could form π – π stacking interactions between the aromatic groups on GTP and the walls of the calixarene.

Fig 1. Calixarenes under study and their complexes with GTP

Fig 1. Calixarenes under study and their complexes with GTP

Once again calculations were carried out at the B97D/6-31G(d,p) level of theory along with molecular dynamics simulations for over 100 ns of production runs. NBO Deletion interaction energies were computed in order to discern which hosts formed the most stable complexes.

NBO Del interaction energies B97D/6-31G(d,p)

NBO Del interaction energies B97D/6-31G(d,p)

You may find a link to the ScienceDirect website for downloading the paper from this link. Last, but certainly not least, I’d like to thank all coauthors for their contributions and patience in getting this study published: Dr. Rodrigo Galindo-Murillo; Alberto Olmedo-Romero; Eduardo Cruz-Flores; Dr. Petronela M. Petrar and Prof. Dr. Kunsági-Máté Sándor. Thanks a lot for everything!

fig8

Donor and acceptor H-bond sites increases the probability of keeping the drug in place for a higher retention rate

Donor and acceptor H-bond sites increases the probability of keeping the drug in place for a higher retention rate

New paper in Journal of Chemical Theory and Computation


Happy new year to all my readers!

Having a new paper published is always a matter of happiness for this computational chemist but this time I’m excedingly excited about anouncing the publishing of a paper in the Journal of Chemical Theory and Computation, which is my highest ranked publication so far! It also establishes the consolidation of our research group at CCIQS as a solid and competitive group within the field of theoretical and computational chemistry. The title of our paper is “In Silico design of monomolecular drug carriers for the tyrosine kinase inhibitor drug Imatinib based on calix- and thiacalix[n]arene host molecules. A DFT and Molecular Dynamics study“.

In this article we aimed towards finding a suitable (thia-) calix[n]arene based drug delivery agent for the drug Imatinib (Gleevec by Novartis), which is a broadly used powerful Tyrosine Kinase III inhibitor used in the treatment of Chronic Myeloid Leukaemia and, to a lesser extent, Gastrointestinal Stromal Tumors; although Imatinib (IMB) exhibits a bioavailability close to 90% most of it is excreted, becomes bound to serum proteins or gets accumulated in other tissues such as the heart causing several undesired side effects which ultimately limit its use. By using a molecular capsule we can increase the molecular weight of the drug thus increasing its retention, and at the same time we can prevent Imatinib to bind, in its active form, to undesired proteins.

We suggested 36 different calix and thia-calix[n]arenes (CX) as possible candidates; IMB-CX complexes were manually docked and then optimized at the B97D/6-31G(d,p) level of theory; Stephan Grimme’s B97D functional was selected for its inclusion of dispersion terms, so important in describing π-π interactions. Intermolecular interaction energies were calculated under the Natural Bond Order approximation; a stable complex was needed but a too stable complex would never deliver its drug payload! This brings us to the next part of the study. A monomolecular drug delivery agent must be able to form a stable complex with the drug but it must also be able to release it. Molecular Dynamics simulations (+100 ns) and umbrella sampling methods were used to analyse the release of the drug into the aqueous media.

Optimized geometries for all complexes under study (B97D/6-31G*)

Optimized geometries for the 20 most stable complexes under study (B97D/6-31G*)

Potential Mean Force profiles for the four most stable complexes for position N1 and  N2 from the QM simulations are shown below (Red, complexes in the N1 position, blue, N2 position). These plots, derived from the MD simulations  give us an idea of the final destination of the drug respect of the calixarene carrier. In the next image, the three preferred structures (rotaxane-like; inside; released) for the final outcome of the delivery process are shown. The stability of the complexes was also assessed by calculating the values of ΔG binding through the use of the Poisson equations.

PMF for the most stable compounds

PMF for the most stable compounds

General MD simulation final structures

General MD simulation final structures

Thanks to my co-authors Maria Eugenia Sandoval-Salinas and Dr. Rodrigo Galindo-Murillo for their enormous contributions to this work; without their hard work and commitment to the project this paper wouldn’t have been possible.

Webinar with Dr. Erik Lindhal – NVIDIA+GROMACS


Thanks to Devang Sachdev from NVIDIA for bringing this webinar to my attention.

The future of computational chemistry seems to be written in CUDA for GPU’s specially when it comes to Molecular Dynamics; as such, NVIDIA has gone through great lengths into introducing scientific computing methods for GPU’s. I still have a pending review of a test drive that people at NVIDIA and EXXACTCORP kindly allowed me to run but that is the topic of the next post.

Next Thursday, April 4th, 2013 from 9:00 AM – 10:00 AM Pacific Standard Time there will be a webinar in which Dr. Erik Lindhal at Stockholm University and NVIDIA will discuss latest GPU-acceleration technologies available to GROMACS users; more specifically the latest accelerated version of GROMACS 4.6, which features are supported, it’s installation and use, and how it performs with latest NVIDIA Kepler GPUs.

Register here: http://goo.gl/0HtqJ

Please register and check your local timezone to avoid delays. I will register as soon as I finish typing this. Thanks once again to Devang Sachdev for all his help, patience and trust in this forum.

%d bloggers like this: