Error for Gaussian16 .log files and GaussView5
There’s an error message when opening some Gaussian16 output files in GaussView5 for which the message displayed is the following:
ConnectionGLOG::Parse_Gauss_Coord(). Failure reading oriented atomic coordinates. Line Number
We have shared some solutions to the GaussView handling of *chk and *.fchk files in teh past but never for *.log files, and this time Dr. Davor Šakić from the University of Zagreb in Croatia has brought to my attention a fix for this error. If “Dipole orientation” with subsequent orientation is removed, the file becomes again readable by GaussView5.
Here you can download a script to fix the file without any hassle. The usage from the command line is simply:
˜$ chmod 777 Fg16TOgv5 ˜$ ./Fg16TOgv5 name.log
The first line is to change and grant all permissions to the script (use at your discretion/own risk), which in turn will take the output file name.log and yield two more files: gv5_name.log and and name.arch; the latter archive allows for easy generation of SI files while the former is formatted for GaussView5.x.
Thanks to Dr. Šakić for his script and insight, we hope you find it useful and if indeed you do please credit him whenever its due, also, if you find this or other posts in the blog useful, please let us know by sharing, staring and commenting in all of them, your feedback is incredibly helpful in justifying to my bosses the time I spent curating this blog.
Thanks for reading.
DFT Textbook in Spanish by Dr. José Cerón-Carrasco
Today’s science is published mostly in English, which means that non-English speakers must first tackle the language barrier before sharing their scientific ideas and results with the community; this blog is a proof that non-native-English speakers such as myself cannot outreach a large audience in another language.
For young scientists learning English is a must nowadays but it shouldn’t shy students away from learning science in their own native tongues. To that end, the noble effort by Dr. José Cerón-Carrasco from Universidad Católica San Antonio de Murcia, in Spain, of writing a DFT textbook in Spanish constitutes a remarkable resource for Spanish-speaking computational chemistry students because it is not only a clear and concise introduction to ab initio and DFT methods but because it was also self published and written directly in Spanish. His book “Introducción a los métodos DFT: Descifrando B3LYP sin morir en el intento” is now available in Amazon. Dr. Cerón-Carrasco was very kind to invite me to write a prologue for his book, I’m very thankful to him for this opportunity.
Así que para los estudiantes hispanoparlantes hay ahora un muy valioso recurso para aprender DFT sin morir en el intento gracias al esfuerzo y la mente del Dr. José Pedro Cerón Carrasco a quien le agradezco haberme compartido la primicia de su libro
¡Salud y olé!
Our first dabble in #MedChem through #CompChem
We’ve expanded the scope of our research interests from quantum mechanical calculations to docking and MedChem for over a year now; it has been a very interesting ride and a very rich avenue of research to explore. Durbis Castillo has led -out of his own initiative- this project and today he presents us with a guest post on the nuances of his project. Bear in mind that the detail of the calculations and a small -very targeted- tutorial on MAESTRO will be provided later in further posts and that making all this decisions required a long process of trial and error, we can only thank Dr. Antonio Romo for his help in minimizing the time this process took.
HIV is a tricky virus, and even though many of the steps included in its lifecycle are druggable, the chemical machinery making it work has been quite elusive since research groups started studying it. Highly Active Antiretroviral Therapy (HAART) works thanks to the combination of several drugs targeting different proteins such as the HIV protease or reverse transcriptase.
In 1998 the elucidation of the gp120 envelope glycoprotein crystal structure introduced a new step in the drug discovery race: HIV entry. Since drugs targeting gp120 have not been widely explored or developed, we decided to use common methodologies like docking (rigid and fit-induced) and ADME predictions to address the following question: How can we easily discover a molecule that inhibits gp120 binding to the lymphocyte CD4 receptor without having to synthesize it first? The answer was to perform a virtual screening with a bottleneck methodology based on docking calculations.
Docking methodologies are often looked as insufficient, careless or even unscientific, since the algorithms they are founded upon are not as accurate or descriptive as the ones that support DFT or ab initio calculations, for example. But there is a huge advantage to simpler operations: less computational resources are required. Then, following Russia’s example when making tanks during the WWII, why not make thousands or millions of docking calculations to quickly explore an entire chemical space and find which molecules are more likely to bind the protein?
And this is exactly what we did. We built a piperazine-based dataset of 16.3 million compounds, all of them including fragments that are reported in the medicinal chemistry literature, thus having two main characteristics, synthetic accessibility and pharmacological activity. These 16.3 million compounds were thoroughly filtered through several docking steps, each one of them being more accurate and comprehensive than the previous one, abruptly eliminating poorly fitted molecules, leaving us with a total of 275 candidates that were redocked in a different crystal structure and a different program (consensus docking).
After analyzing the ADME properties of the candidates, with descriptors such as human oral absorption and possible metabolic reactions, as well as the Induced-Fit Docking score of these molecules, ten ligands were selected as the best ones inside the analyzed chemical space. You can see ligand 255 (figure 1) as an example of the molecules that obtained the best scores throughout the docking steps.

Figure 1
Many of the colleague researchers related to this kind of topics asked “Why didn’t you download a set of molecules from Zinc or Maybridge?” And the answer to this question includes three aspects: first we wanted to test a combinatorial approach to drug design, second, we wanted to test whether including a piperazine as the core of the set of molecules would immediately grant them activity and high potency, and finally, a built database will always confer a higher degree of novelty to the possible hits when compared to commercially available compounds whose synthesis has already been developed. However, this last point needs to be addressed by an organic chemist since none of the molecules from our database have ever been synthesized (any takers?).
Right now, we are trying to explore further through molecular dynamics simulations using Desmond and Amber. Other future goals for this project include screening large databases of commercial and novel compounds with gp120 and other proteins involved in the HIV lifecycle. Also, we remain open to collaborate with anyone interested in taking the challenge to synthesize our molecules, as well as performing the biochemical assays to get an idea of their activity.
More details on MD simulations and the path of our first virtual hits to follow. Anyone interested in reading my thesis work can contact me through my linkedin profile at https://www.linkedin.com/in/durbisjaviercp/. An article is under preparation and will soon be submitted, stay tuned!
Python scripts for calculating Fukui Indexes
One of the most popular posts in this blog has to do with calculating Fukui indexes, however, when dealing with a large number of molecules, our described methodology can become cumbersome since it requires to manually extract the population analysis from two or three different output files and then performing the arithmetic on them separately with a spreadsheet or something.
Our new team member Ricardo Loaiza has written a python script that takes the three aforementioned files and yields a .csv file with the calculated Fukui indexes, and it even points out which of the atoms exhibit the largest values so if you have a large molecule you don’t have to manually check for them. We have also a batch version which takes all the files in any given directory and performs the Fukui calculations for each, provided it can find file triads with the naming requirements described below.
Output files must be named filename.log (the N electrons reference state), filename_plus.log (the state with N+1 electrons) and filename_minus.log (the N-1 electrons state). Another restriction is that so far these scripts only work with NBO population analysis as provided by the NBO3.1 program available in the various versions of Gaussian. I imagine the listing is similar in NBO5.x and NBO6.x and so it should work if you do the population analysis with them.
The syntax for the single molecule version is:
python fukui.py filename.log filename_minus.log filename_plus.log
For the batch version is:
./fukuiPorLote.sh
(Por Lote means In Batch in Spanish.)
These scripts are available via GitHub. We hope you find them useful, and you do please let us know whether here at the comments section or at our GitHub site.
fchk file errors (Gaussian) Missing or bad Data: RBond
We’ve covered some common errors when dealing with formatted checkpoint files (*.fchk) generated from Gaussian, specially when analyzed with the associated GaussView program. (see here and here for previous posts on the matter.)
Prof. Neal Zondlo from the University of Delaware kindly shared this solution with us when the following message shows up:
CConnectionGFCHK::Parse_GFCHK() Missing or bad data: Rbond Line Number 1234
The Rbond label has to do with the connectivity displayed by the visualizer and can be overridden by close examination of the input file. In the example provided by Prof. Zondlo he found the following line in the connectivity matrix of the input file:
2 9 0.0
which indicates a zero bond order between atoms 2 and 9, possibly due to their proximity. He changed the line to simply
2
So editing the connectivity of your atoms in the input can help preventing the Rbond message.
I hope this helps someone else.
XVI Mexican Meeting on Phys.Chem.
A yearly tradition of this Comp.Chem. lab and many others throughout our nation is to attend the Mexican Meeting on Theoretical Physical Chemistry to share news, progress and also a few drinks and laughs. This year the RMFQT was held in Puebla and although unfortunately I was not able to attend this lab was proudly represented by its current members. Gustavo Mondragón gave a talk about his progress on his photosynthesis research linking to the previous work of María Eugenia Sandoval already presented in previous editions; kudos to Gustavo for performing remarkably and thanks to all those who gave us their valuable feedback and criticism. Also, five posters were presented successfully, I can only thank the entire team for representing our laboratory in such an admirable way, and a special mention to the junior members, I hope this was the first of many scientific events they attend and may you deeply enjoy each one of them.
Among the invited speakers, the RMFQT had the honor to welcome Prof. John Perdew (yes, the P in PBE); the team took the opportunity of getting a lovely picture with him.
Here is the official presentation of the newest members of our group:
Alejandra Barrera (hyperpolarizabilty calculations on hypothetical poly-calyx[n]arenes for the search of NLO materials)
Fernando Uribe (Interaction energy calculations for non-canonical nucleotides)
Juan Guzmán (Reaction mechanisms calculations for catalyzed organic reactions)
We thank the organizing committee for giving us the opportunity to actively participate in this edition of the RMFQT, we eagerly await for next year as every year.
#MemeYourThesis #MemeYourResearch
As we were hanging out recently, the idea came to us at the lab to create memes in order to summarize our work. We should be writing articles but hey, we needed the break, and so we shared them with each other in our last group meeting along with a good laugh. Here are some of the funniest ones.

A fail safe method for Comp. Chem.
Having doughnuts during our weekly meetings has proven a huge success in itself:
Finding transition states for organic chemical reactions can be a bit frustrating at times:
Good old photosynthesis sparked a few realizations too:
We’re dealing with docking calculations for a massive number of molecules. This has sparked a few inside jokes too:
A conversation about heterocyclic nomenclature that sparked this other post:
Try your own and share. Thanks for reading.
A New Graduate Student!
Last Friday we had a new graduate student when our very own Marco Antonio Diaz defended his BSc thesis on the in silico design of drug carriers based on calix[n]arenes. During his thesis he performed around 160 different calculations regarding the interaction energy of our host-guest inclusion complexes, both using the supramolecular method and the NBODel procedure available in NBO3.1 as provided with Gaussian 09. One of the main targets of this work was to assess both methods -with the proper BSSE corrections- in their capabilities for the calculation of interaction energies.
We found that the NBODel method consistently generates interaction energies that are similar to those of the SM method + the BSSE correction (as opposed to SM – BSSE which is the proper correction). Marco and I are still in the process of writing the article so maybe it will be published in early 2018. In this case we’re using calixarenes to deliver three drugs: warfarine, furosemide, phenylbutazone to compite with ocratoxin-A (OTA) for the binding site in Human Serum Albumin (HSA).
This project is undertaken in collaboration with my good friend Dr. Sándor Kunsági-Máté in Pécsi Tudomanyegyetem in Hungary.
Congratulations to Marco from all of us here at the lab!