# Useful Thermochemistry from Gaussian Calculations

Statistical Mechanics is the bridge between microscopic calculations and thermodynamics of a particle ensemble. By means of calculating a partition function divided in electronic, rotational, translational and vibrational functions, one can calculate all thermodynamic functions required to fully characterize a chemical reaction. From these functions, the vibrational contribution, together with the electronic contribution, is the key element to getting thermodynamic functions.

Calculating the Free Energy change of any given reaction is a useful approach to asses their thermodynamic feasibility. A large negative change in Free Energy when going from reagents to products makes up for a quantitative spontaneous (and exothermic) reaction, nevertheless the rate of the reaction is a different story, one that can be calculated as well.

Using the **freq** option in your route section for a Gaussian calculation is mandatory to ascertain the current wave function corresponds to a minimum on a potential energy hypersurface, but also yields the thermochemistry and thermodynamic values for the current structure. However, thermochemistry calculations are not restricted to minima but it can also be applied to transition states, therefore yielding a full thermodynamic characterization of a reaction mechanism.

A regular **freq** calculation yields the following output (all values in atomic units):

Zero-point correction= 0.176113 (Hartree/Particle) Thermal correction to Energy= 0.193290 Thermal correction to Enthalpy= 0.194235 Thermal correction to Gibbs Free Energy= 0.125894 Sum of electronic and zero-point Energies= -750.901777 Sum of electronic and thermal Energies= -750.884600 Sum of electronic and thermal Enthalpies= -750.883656Sum of electronic and thermal Free Energies= -750.951996

For any given reaction say A+B -> C one could take the values from the last row (lets call it G) for all three components of the reaction and perform the arithmetic: DG = GC – [GA + GB], so products minus reagents.

By default, Gaussian calculates these values (from the previously mentioned partition function) using normal conditions, T = 298.15 K and P = 1 atm. For an assessment of the thermochemistry at other conditions you can include in your route section the corresponding keywords **Temperature=**x.x and **Pressure=**x.x, in Kelvin and atmospheres, respectively.

(Huge) **Disclaimer**: Although calculating the thermochemistry of any reaction by means of DFT calculations is a good (and potentially very useful) guide to chemical reactivity, getting quantitative results require of high accuracy methods like G3 or G4 methods, collectively known as Gn mehtods, which are composed of pre-defined stepwise calculations. The sequence of these calculations is carried out automatically; no basis set should be specified. Other high accuracy methods like CBS-QB3 or W1U can also be considered whenever Gn methods are too costly.

Posted on August 7, 2019, in Computational Chemistry, Gaussian, Reaction Mechanisms, Theoretical Chemistry, Thermodynamics, White papers and tagged Chemical Reactivity, Computational and Theoretical Chemistry, Computational Chemistry, Free Energy Change, Frequency, Theoretical Chemistry, theoretical physical chemistry, Thermochemistry, Thermodynamics, Vibrational Spectroscopy. Bookmark the permalink. 1 Comment.

Good evening, Dr. Barroso, please, how does one concretely evaluate the variation of free enthalpy of a given molecule after performing a frequency calculation?