Category Archives: Computational Chemistry


It was my distinct pleasure for me to participate in the organization of the latest edition of the Mexican Meeting on Theoretical Physical Chemistry, RMFQT which took place last week here in Toluca. With the help of the School of Chemistry from the Universidad Autónoma del Estado de México.

This year the national committee created a Lifetime Achievement Award for Dr. Annik Vivier, Dr. Carlos Bunge, and Dr. José Luis Gázquez. This recognition from our community is awarded to these fine scientists for their contributions to theoretical chemistry but also for their pioneering work in the field in Mexico. The three of them were invited to talk about any topic of their choosing, particularly, Dr. Vivier stirred the imagination of younger students by showing her pictures of the times when she used to hangout with Slater, Roothan, Löwdin, etc., it is always nice to put faces onto equations.

Continuing with a recent tradition we also had the pleasure to host three invited plenary lectures by great scientists and good friends of our community: Prof. William Tiznado (Chile), Prof. Samuel B. Trickey (USA), and Prof. Julia Contreras (France) who shared their progress on their recent work.

As I’ve abundantly pointed out in the past, the RMFQT is a joyous occasion for the Mexican theoretical community to get together with old friends and discuss very exciting research being done in our country and by our colleagues abroad. I’d like to add a big shoutout to Dr. Jacinto Sandoval-Lira for his valuable help with the organization of our event.

Non-canonical Base Pairs show Watson-Crick pairing in MD simulations

Elucidating the pairing of non-hydrogen bonded unnatural base pairs (UBPs) is still a controversial subject due to the lack of specificity in their mutual interactions. Experimentally, NMR is the method of choice but the DNA strand must be affixed on template of sorts such as a polymerase protein. Those discrepancies are well documented in a recent review which cites our previous computational work, both DFT and MD, on UBPs.

Since that last paper of ours on synthetic DNA, my good friend Dr. Rodrigo Galindo from Utah U. and I have had serious doubts on the real pairing fashion exhibited by Romesberg’s famous hydrophobic nucleotides d5SICS – dNaM. While the authors claim a stacked pairing (within the context of the strand in the KlenTaq polymerase enzime), our simulations showed a Watson-Crick-like pairing was favored in the native form. To further shed light on the matter we performed converged micro-seconds long simulations, varying the force field (two recent AMBER fields were explored: Bsc1 and OL15), the water model (TIP3P and OPC), and the ionic compensation scheme (Na+/Cl or Mg2+/Cl).

In the image below it can be observed how the pairing is consistently WC (dC1′-C1′ ~10.4 A) in the most populated clusters regardless of the force field.

Also, a flipping experiment was performed where both nucleotides were placed 180.0° outwards and the system was left to converge inwards to explore a ‘de novo’ pairing guided solely by their mutual interactions and the template formed by the rest of the strand. Distance population for C1′ – C1′ were 10.4 A for Bsc1 (regardless of ionic compensation) and 9.8 A for OL15 (10.4 A where Mg2+ was used as charge compensation).

This study is now published in the Journal of Biomolecular Structure & Dynamics

Despite the successful rate of replication by a living organism -which is a fantastic feat!- of these two nucleotides, there is little chance they can be used for real coding applications (biological or otherwise) due to the lack of structural control of the double helix. The work of Romesberg is impressive, make no mistake about it, but my money isn’t on hydrophobic unnatural nucleotides for information applications 🙂

All credit and glory is due to the amazing Dr. Rodrigo Galindo-Murillo from the University of Utah were he works as a developer for the AMBER code among many other things. Go check his impressive record!

Useful Thermochemistry from Gaussian Calculations

Statistical Mechanics is the bridge between microscopic calculations and thermodynamics of a particle ensemble. By means of calculating a partition function divided in electronic, rotational, translational and vibrational functions, one can calculate all thermodynamic functions required to fully characterize a chemical reaction. From these functions, the vibrational contribution, together with the electronic contribution, is the key element to getting thermodynamic functions.

Calculating the Free Energy change of any given reaction is a useful approach to asses their thermodynamic feasibility. A large negative change in Free Energy when going from reagents to products makes up for a quantitative spontaneous (and exothermic) reaction, nevertheless the rate of the reaction is a different story, one that can be calculated as well.

Using the freq option in your route section for a Gaussian calculation is mandatory to ascertain the current wave function corresponds to a minimum on a potential energy hypersurface, but also yields the thermochemistry and thermodynamic values for the current structure. However, thermochemistry calculations are not restricted to minima but it can also be applied to transition states, therefore yielding a full thermodynamic characterization of a reaction mechanism.

A regular freq calculation yields the following output (all values in atomic units):

Zero-point correction=                           0.176113 (Hartree/Particle)
 Thermal correction to Energy=                    0.193290
 Thermal correction to Enthalpy=                  0.194235
 Thermal correction to Gibbs Free Energy=         0.125894
 Sum of electronic and zero-point Energies=           -750.901777
 Sum of electronic and thermal Energies=              -750.884600
 Sum of electronic and thermal Enthalpies=            -750.883656
 Sum of electronic and thermal Free Energies=         -750.951996

For any given reaction say A+B -> C one could take the values from the last row (lets call it G) for all three components of the reaction and perform the arithmetic: DG = GC – [GA + GB], so products minus reagents.

By default, Gaussian calculates these values (from the previously mentioned partition function) using normal conditions, T = 298.15 K and P = 1 atm. For an assessment of the thermochemistry at other conditions you can include in your route section the corresponding keywords Temperature=x.x and Pressure=x.x, in Kelvin and atmospheres, respectively.

(Huge) Disclaimer: Although calculating the thermochemistry of any reaction by means of DFT calculations is a good (and potentially very useful) guide to chemical reactivity, getting quantitative results require of high accuracy methods like G3 or G4 methods, collectively known as Gn mehtods, which are composed of pre-defined stepwise calculations. The sequence of these calculations is carried out automatically; no basis set should be specified. Other high accuracy methods like CBS-QB3 or W1U can also be considered whenever Gn methods are too costly.

Failure Reading NMR data in GaussView

There was this following message on a GIAO calculation when trying to open the file in GaussView5.0 (it opens successfully in ChemCraft)

Failure reading NMR data 
Line Number 2414

When you go to said line (line 2414) you find the following string:

Eigenvalues:-12345.6789 -12345.6789 -12345.6789

Which belong to the eigenvalues of the SCF NMR GIAO shielding tensor. The problem lies with the space missing between the colon sign ‘:’ and the ‘-‘ sign of the first eigenvalue. You can fix it either by hand with an editor but GV only warns you about the first instance so there may be others and you need to repeat the procedure. It is probably best to fix them all in one go with the following command from the terminal:

sed -i ‘s/Eigenvalues:-/Eigenvalues: -/g’

It is good to be back in Romania at the UBB writing these posts where this blog began. Thanks to my good friend Dr. Alexandru Lupan for pointing out this error.

Atom specifications unexpectedly found in input stream.

“Well, where else were they supposed to appear?”

I was sent this error along with the previous question for a failed optimization. Apparently there is no answer in the internet (I quickly checked) so here it is:

Gaussian is confused about finding atomic coordinates because there is also a geom=check instruction placed in the route section, i.e., it was told to retrieve the atomic coordinates from a checkpoint and then it was given those atomic coordinates within the input so it doesn’t know what you mean and exits.

Using PDB files for Electronic Structure Calculations

Quick Post on preparing Gaussian input files from PDB files.

If you’re modeling biological systems chances are that, more often than not, you start by retrieving a PDB file. The Protein Data Bank is a repository for all things biochemistry – from oligo-peptides to full DNA sequences with over 140,000 available files encoding the corresponding structure obtained by various experimental means ranging from X-Ray diffraction, NMR and more recently, Cryo Electron Microscopy (CEM).

The PDB file encodes the Cartesian coordinates for each atom present in the structure as well as their in the same way molecular dynamics codes -like AMBER or GROMACS- code the parameters for a force field; this makes the PDB a natural input file for MD.

There are however some considerations to have in mind for when you need to use these coordinates in electronic structure calculations. Personally I give it a pass with OpenBabel to add (or possibly just re-add) all Hydrogen atoms with the following instruction:

$>obabel -ipdb filename.pdb -ogjf -Ofilename.gjf -h

Alternatively, you can select a pH value, say 7.5 with:

$>obabel -ipdb filename.pdb -ogjf -Ofilename.gjf -h -p7.5

You may also use the GUI if by any chance you’re working in Windows:

This sends all H atoms to the end of the atoms list. Usually for us the next step is to optimize their positions with a partial optimization at a low level of theory for which you need to use the ReadOptimize ReadOpt or RdOpt in the route section and then add the atom list at the end of the input file:

Atomic coordinates
--blank line--
noatoms atoms=H
--blank line--

Finally, visual inspection of your input structure is always helpful to find any meaningful errors, remember that PDB files come from experimental measurements which are not free of problems.

As usual thanks for reading, commenting, and sharing.

Gustavo “Gus” Mondragón M.Sc. – Thesis Defense

We celebrate the successful thesis defense of Gustavo “Gus” Mondragón who has now completed his Masters degree and is now on to getting a PhD in our group. Gustavo has worked on the search for multiexcitonic states and their involvement in the excitonic transference between photosynthetic pigments, specifically between bacteriochlorophyll-d molecules (BChl-d) from the bchQRU chlorosome whose whole structure is shown in the gallery below. To this end, Gustavo has studied and implemented the Restricted Active Space method with double spin flip (RAS-2SF) with the use of QChem5.0, a method that has required the use and understanding of states with high multiplicities. Additionally, Gustavo has investigated the influence of the environment within the chlorosome by performing ONIOM calculations for the spectroscopic properties of a BChl-d dimer, finding albeit qualitatively a batochromic effect, probably an expected result but nonetheless an impressive feat for the level of theory selected.

There’s still a lot of work to do in this line of research and although we’re eager to publish our results in this excitonic transference mechanism we want to be completely sure that we’re taking every possibility into consideration so we don’t incur into any inconsistencies.

Gustavo cultivates many research interests from excited states of these pigments to biochemical processes that require the use of various tools; I’m sure his permanence in our lab will bring lots of interesting results. Congratulations, Gus! Thank you for your hard work.

Estimation of pKa Values through Local Electrostatic Potential Calculations

Calculating the pKa value for a Brønsted acid is very hard, like really hard. A full thermodynamic cycle (fig. 1) needs to be calculated along with the high-accuracy solvation free energy for each of the species under consideration, not to mention the use of expensive methods which will be reviewed here in another post in two weeks time.

Fig 1. Thermodynamic Cycle for the pKa calculation of any given Bronsted acid, HA

Finding descriptors that help us circumvent the need for such sophisticated calculations can help great deal in estimating the pKa value of any given acid. We’ve been interested in the reactivity of σ-hole bearing groups in the past and just like Halogen, Tetrel, Pnicogen and Chalcogen bonds, Hydrogen bonds are highly directional and their strength depends on the polarization of the O-H bond. Therefore, we suggested the use of the maximum surface electrostatic potential (VS,max) on the acid hydrogen atom of carboxylic acids as a descriptor for the strength of their interaction with water, the first step  in the deprotonation process. 

We selected six basis sets; five density functionals; the MP2 method for a total of thirty-six levels of theory to optimize and calculate VS,max on thirty carboxylic acids for a grand total of 1,080 wavefunctions, which were later passed onto MultiWFN (all calculations were taken with PCM = water). Correlation with the experimental pKa values showed a great correlation across the levels of theory (R2 > 0.9), except for B3LYP. Still, the best correlations were obtained with LC-wPBE/cc-pVDZ and wB97XD/cc-pVDZ. From this latter level of theory the linear correlation yielded the following equation:

pKa = -0.2185(VS,max) + 16.1879

Differences in pKa turned out to be less than 0.5 units, which is remarkable for such a straightforward method; bear in mind that calculation of full thermodynamic cycles above chemical accuracy (1.0 kcal/mol) yields pKa differences above 1.0 units.

We then took this equation for a test with 10 different carboxylic acids and the prediction had a correlation of 98% (fig. 2)

fig 2. calculated v experimental pKa values for a test set of 10 carboxylic acids from equation above

I think this method can really catch on for a quick way to predict the pKa values of any carboxylic acid imaginable. We’re now working on the model extension to other groups (i.e. Bronsted bases) and putting together a black-box workflow so as to make it even more accessible and straightforward to use. 

We’ve recently published this work in the journal Molecules, an open access publication. Thanks to Prof. Steve Scheiner for inviting us to participate in the special issue devoted to tetrel bonding. Thanks to Guillermo Caballero for the inception of this project and to Dr. Jacinto Sandoval for taking the time from his research in photosynthesis to work on this pet project of ours and of course the rest of the students (Gustavo Mondragón, Marco Diaz, Raúl Torres) whose hard work produced this work.

Dr. Gabriel Merino wins The Walter Kohn Prize 2018

Just as I was thinking about the state of Mexican scientific environment in the global scale, Prof. Dr. Gabriel Merino from CINVESTAV comes and gets this prize awarded by the International Center for Theoretical Physics (ICTP) and the Quantum ESPRESSO Foundation, showing us all that great science is possible even under pressing circumstances. 

Prof. Dr. Gabriel Merino at CINVESTAV Mérida, Yucatán, MEXICO

This prize is awarded biennially to a young scientist for outstanding contributions in the field of quantum-mechanical materials and molecular modeling, performed in a developing country or emerging economy,and in the case of Dr. Merino it is awarded not only for his contributions to theory and applications but also by his contributions to the prediction of novel systems that violate standard chemical paradigms, broadening the scope of concepts like aromaticity, coordination and chemical bond. The list of his contributions is very long despite his young age and there are barely any topic in chemistry or materials science that escapes his interest.

Gabriel is also one of the leading organizers of the Mexican Theoretical Physical Chemistry Meeting, an unstoppable mentor with many of his former students now leading research teams of their own. He is pretty much a force of nature. 

Congratulations to Dr. Gabriel Merino, his team, CINVESTAV and thanks for being such an inspiration and a good friend at the same time.

¡Felicidades, Gabriel!

Computational Chemistry from Latin America

The video below is a sad recount of the scientific conditions in Mexico that have driven an enormous amount of brain power to other countries. Doing science is always a hard endeavour but in developing countries is also filled with so many hurdles that it makes you wonder if it is all worth the constant frustration. 

That is why I think it is even more important for the Latin American community to make our science visible, and special issues like this one from the International Journal of Quantum Chemistry goes a long way in doing so. This is not the first time IJQC devotes a special issue to the Comp.Chem. done south of the proverbial border, a full issue devoted to the Mexican Physical Chemistry Meetings (RMFQT) was also published six years ago.

I believe these special issues in mainstream journals are great ways of promoting our work in a collected way that stresses our particular lines of research instead of having them spread a number of journals. Also, and I may be ostracized for this, but I think coming up with a new journal for a specific geographical community represents a lot of effort that takes an enormous amount of time to take off and thus gain visibility. 

For these reasons I’ve been cooking up some ideas for the next RMFQT website. I don’t pretend to say that my colleagues need any shoutouts from my part -I could only be so lucky to produce such fine pieces of research myself- but it wouldn’t hurt to have a more established online presence as a community. 

¡Viva la ciencia Latinoamericana!

%d bloggers like this: