Theoretical evaluation of a reaction mechanism is all about finding the right transition states (TS) but there are no guarantees within the available methods to actually find the one we need. Chemical intuition in the proposal of a mechanism is paramount. Let’s remember that a TS is a critical point on a Potential Energy Surface (PES) that is a minimum in every dimension but one. For a PES with more than two degrees of freedom, a hyper-surface, envisioning the location of a TS is a bit tricky, in the case of a three dimensional PES (two degrees of freedom) the saddle point constitutes the location of the TS as depicted in figure 1 by a section of a revolution hyperboloid.

400px-Saddle_point
Fig1. Saddle point on a surface (min in one direction; max in the other)
Fig 1a Pringles chips -Yuck-. They exhibit a maximum on the direction parallel to the screen and a minimum on the direction perpendicular to the screen at the same point.
Fig 1a Pringles chips -Yuck-. They exhibit a maximum on the direction parallel to the screen and a minimum on the direction perpendicular to the screen at the same point.

The following procedure considers gas phase calculations. Nevertheless, the use of the SCRF keyword activates the implicit solvent calculation of choice in order to evaluate to some degree the solvent influence on the reaction energetics at different temperatures with the use of the temperature keyword.

The first step consists of a high level optimization of all minimums involved, such as reagents, products and intermediates, with a subsequent frequency analysis that includes no imaginary eigenvalues.

In order to find the structures of the transition states we use in Gaussian the Synchronous Transit-guided Quasi-Newton method [1] through the keywords QST2 or QST3. In the former case, coordinates for the reagents and products are needed as input; for the latter keyword, coordinates for the TS structure guess is needed also.

QST2)

%chk=file.chk
%nprocshared=n
%mem=nGB

#p opt=(qst2,redundant) m062x/6-31++G(d,p) freq=noraman Temperature=373.15 SCRF=(Solvent=Water)

Title card for reagents

Q M
Cartesian Coordinates for reagents
blank line
Title card for products

Q M
Cartesian Coordinates for products
blank line

QST3)

%chk=file.chk
%nprocshared=n
%mem=nGB

#p opt=(qst3,redundant) m062x/6-31++G(d,p) freq=noraman Temperature=373.15 SCRF=(Solvent=Water)

Title Card for reagents

Q M
Cartesian Coordinates for reagents
blank line
Title card for products

Q M
Cartesian Coordinates for products
blank line–
Title card for TS
Q M
Cartesian Coordinates for TS
blank line

NOTE: It is fundamental that the numbering order is kept constant throughout the molecular specifications of all two, or three, input structures. Hence, I recommend to build a set of molecules, save their structure, and then modified the coordinates on the same file to produce the following structure, that way the number for every atom will remain the same for every step.

As I wrote above, there are no guarantees of finding the right TS so many attempts are probably needed. Once we have the optimized structures for all the species involved in our mechanistic proposal we can plot their energies very simply with MS Excel the way we’ve previously described in this blog (reblogged from eutactic.wordpress.com)

Once we’ve succeeded in finding the structure of our TS we may run an Internal Reaction Coordinate (IRC) calculation. This calculation will connect the TS structure to those of the products and the reagents. Initial constant forces are required and these are commonly retrieved from the TS calculation checkpoint file through the RCFC keyword.

%chk=QST3_2p.chk
%nprocshared=8

#p m062x/6-31++G(d,p) IRC=(Maxpoints=50,RCFC,phase=(2,1))Temperature=373.15 SCRF=(Solvent=Water) geom=allcheck

Title Card

Q M
blank line

Finally, the IRC path can be visualized with GaussView from the Results menu. A successful IRC will link both structures along a single reaction coordinate proving that both reagents and products are linked by the obtained TS.

Hat tip to Howard Diaz who has become quite skillful in calculating these mechanisms as proven by his recent poster at the XII RMFQT a couple of weeks back. And as usual thanks to everyone who reads, comments, likes, recommends, rates and shares my silly little posts.

Advertisement