Blog Archives

To Chem, or not “Too Chem”? That is the #ChemNobel Question


To chem or not -quite- too chem, that is the ChemNobel question:
Whether ’tis Nobeler in the mind to suffer
The curly arrows of organic fortune
Or to take rays against a sea of crystals
And by diffracting end them.

Me (With sincere apologies to WS)

Every year, in late September -like most chemists- I try to guess who will become the next Nobel Laureate in Chemistry. Also, every year, in early October -like most chemists- I participate in the awkward and pointless discussion of whether the prize was actually awarded to chemistry or not. Indeed, the Nobel prize for chemistry commonly stirs a conversation of whether the accomplishments being recognized lie within the realm of chemistry or biology whenever biochemistry shows its head, however shyly; but the task of dividing chemistry into sub-disciplines raises an even deeper question about the current validity of dividing science into broad branches in the first place and then further into narrower sub-disciplines.

I made a very lazy histogram of all the 178 Laureates since 1904 to 2017 based on subjective and personal categories (figure 1), and the creation of those categories was in itself an exercise in science contemplation. My criteria for some of the tough ones was the following: For instance, if it dealt with phenomena of atomic or sub-molecular properties (Rutherford 1908, Hahn 1944, Zewail 1999) then I placed it in the Chemical Physics category but if it dealt with an ensemble of molecules (Arrhenius 1903, Langmuir 1932, Molina 1995) then Physical Chemistry was chosen. Some achievements were about generating an analysis technique which then became essential to the development of chemistry or any of its branches but not for a chemical process per se, those I placed into the Analytical Chemistry box, like last year’s 2017 prize for electron cryo-microscopy (Dubochet, Frank, Henerson) or like 1923 prize to Fritz Pregl for “the invention of the method of microanalysis of organic substances” for which the then head of the Swedish Academy of Sciences, O. Hammarsten, pointed out that the prize was awarded not for a discovery but for modifying existing methods (which sounds a lot like a chemistry disclaimer to me). One of the things I learnt from this  exercise is that subdividing chemistry became harder as the time moved forward which is a natural consequence of a more complex multi- and interdisciplinary environment that impacts more than one field. Take for instance the 2014 (Super Resolved Fluorescence Microscopy) and 2017 (Cryo-Electron Microscopy) prizes; out of the six laureates, only William Moerner has a chemistry related background a fact that was probably spotted by Milhouse Van Houten (vide infra).

Some of the ones that gave me the harder time: 1980, Gilbert and Sanger are doing structural chemistry by means of developing analytical techniques but their work on sequencing is highly influential in biochemistry that they went to the latter box; The same problem arose with Klug (1982) and the Mullis-Smith duo (1993). In 1987, the Nobel citation for Supramolecular Chemistry (Lehn-Cram-Pedersen) reads “for their development and use of molecules with structure-specific interactions of high selectivity.”, but I asked myself, are these non-covalent-bond-forming reactions still considered chemical reactions? I want to say yes, so placed the Lehn-Cram-Pedersen trio in the Synthesis category. For the 1975 prize I was split so I split the prizes and thus Prelog (stereochemistry of molecules) went into the Synthesis category (although I was thinking  in terms of organic chemistry synthesis) and Cornforth (stereochemical control of enzymatic reactions) went into biochem. So, long story short, chemistry’s impact in biology has always had a preponderant position for the selection of the Nobel Prize in Chemistry, although if we fuse the Synthesis and Inorganic Chemistry columns we get a fairly even number of synthesis v biochemistry prizes.

Hard as it may be to fit a Laureate into a category, trying to predict the winners and even bet on it adds a lot of fun to the science being recognized. Hey! even The Simpsons did it with a pretty good record as shown below. Just last week, there was a very interesting and amusing ACS Webinar where the panelist shared their insights on the nomination and selection process inside the Swedish Academy; some of their picks were: Christopher Walsh (antibiotics); Karl Deisseroth (optogenetics); Horwich and Hartl (chaperon proteins); Robert Bergman (C-H activation); and John Goodenough (Li-ion batteries). Arguably, the first three of those five could fit the biochem profile. From those picks the feel-good prize and my personal favorite is John Goodenough not only because Li-ion batteries have shaped the modern world but because Prof. Goodenough is 96 years old and still very actively working  in his lab at UT-Austin (Texas, US) #WeAreAllGoodEnough. Another personal favorite of mine is Omar Yaghi not only for the development of Metal-Organic-Frameworks (MOFs) but for a personal interaction we had twenty years ago that maybe one day I’ll recount here but for now I’ll just state the obvious: MOFs have shown a great potential for applications in various fields of chemistry and engineering but perhaps they should first become highly commercial for Yaghi to get the Nobel Prize.

simpson_betting_poll_-_h_-_2016

W.E. Moerner and B.L. Feringa are now Nobel Laureates. Zare and Moerner have worked in spectroscopy whereas Feringa and Sonogashira are deep into synthesis

Some curiosities and useless trivia: Fred Sanger is the only person to have been awarded the Nobel Prize in Chemistry twice. Marie Curie is the only person to have been awarded two Nobel Prizes in different scientific categories (Physics and Chemistry) and Linus Pauling was awarded two distinct Nobel Prizes (Chemistry and Peace). Hence, three out of the four persons ever to have been awarded two Nobel Prizes did it at least once in chemistry – the fourth is John Bardeen two times recipient of the Nobel Prize in Physics.

Of course the first thing I’ll do next Wednesday right after waking up is checking who got the Nobel Prize in Chemistry 2018 and most likely the second thing will be going to my Twitter feed and react to it, hopefully the third will be to blog about it.

The announcement is only two days away, who is your favorite?

#WeAreAllGoodEnough

 

Advertisements

#MemeYourThesis #MemeYourResearch


As we were hanging out recently, the idea came to us at the lab to create memes in order to summarize our work. We should be writing articles but hey, we needed the break, and so we shared them with each other in our last group meeting along with a good laugh. Here are some of the funniest ones.

Screenshot_15

A fail safe method for Comp. Chem.

Having doughnuts during our weekly meetings has proven a huge success in itself:

Screenshot_16cerebro3 ING

Finding transition states for organic chemical reactions can be a bit frustrating at times:

Screenshot_19Screenshot_18

Good old photosynthesis sparked a few realizations too:

We’re dealing with docking calculations for a massive number of molecules. This has sparked a few inside jokes too:

 

A conversation about heterocyclic nomenclature that sparked this other post:

1xej3h

Try your own and share. Thanks for reading.

 

#CompChem – Can Orbitals Be Directly Observed?


No. 

Rank your QM knowledge according to Pauli’s Exclusion Principle


Pauli’s Exclusion Principle is a paramount concept in Quantum Mechanics which has implications from statistical mechanics to quantum chemistry, consequently, there are many different statements to summarize it depending on the forum. I occasionally joke with my students about how we learnt it in kindergarten an how we state it now at the end of our computational chemistry course.

So, are you a toddler or high up there with W. Pauli predicting the existence of sub-atomic particles at CERN? Which statement of Pauli’s Exclusion Principle sounds more familiar to you?

QM Evolutionary tree!

QM Evolutionary tree!

LOL just feeling a little humorous this morning!

%d bloggers like this: