Monthly Archives: December 2017

Another Great Year at the Lab! 2017


2017 was a complicated year for various reasons here in Mexico (and some personal health issues) but nonetheless I’m very proud of the performance of everyone at the lab whose hard work and great skills keep pushing our research forward.

Four new members joined the team and have presented their work at the national meeting for CompChem for the first time. Also, for the first time, one of my students, Gustavo Mondragón, gave a talk at this meeting with great success about his research on the Fenna Matthews Olson complex of photosynthetic bacteria.

The opportunity to attend WATOC at Munich presented me the great chance to meet wonderful people from around the world and was even kindly and undeservingly invited to write the prologue for an introductory DFT book by Prof. Pedro Cerón from Spain. I hope to Jeep up with the collaborations abroad such as the one with the Mirkin group at Nortgwestern and the one with my dear friend Kunsagi-Mate Sándor at Pecsi Tudomanyegyetem (Hungary), among many others; I’m thankful for their trust in our capabilities.

Two members got their BSc degrees, Marco an Durbis, the latter also single handedly paved the way for us to develop a new research line on the in silico drug developing front; his relentless work has also been praised by the QSAR team at the Institute of Chemistry with which he has collaborated by performing toxicity calculations for the agrochemical industry as well as by designing educational courses aimed to the dissemination of our work and QSAR in general among regulatory offices and potential clients. We’re sad to see him go next fall but at the same time we’re glad to know his scientific skills will further develop.

I cannot thank the team enough: Alejandra Barrera, Gustavo Mondragón, Durbis Castillo, Fernando Uribe, Juan Guzman, Alberto Olmedo, Eduardo Cruz, Ricardo Loaiza and Marco Garcia; may 2018 be a great year for all of you.

And to all the readers thank you for your kind words, I’m glad this little space which is about to become nine years old is regarded as useful; to all of you I wish a great 2018!

 

Advertisements

Python scripts for calculating Fukui Indexes


One of the most popular posts in this blog has to do with calculating Fukui indexes, however, when dealing with a large number of molecules, our described methodology can become cumbersome since it requires to manually extract the population analysis from two or three different output files and then performing the arithmetic on them separately with a spreadsheet or something.

Our new team member Ricardo Loaiza has written a python script that takes the three aforementioned files and yields a .csv file with the calculated Fukui indexes, and it even points out which of the atoms exhibit the largest values so if you have a large molecule you don’t have to manually check for them. We have also a batch version which takes all the files in any given directory and performs the Fukui calculations for each, provided it can find file triads with the naming requirements described below.

Output files must be named filename.log (the N electrons reference state), filename_plus.log (the state with N+1 electrons) and filename_minus.log (the N-1 electrons state). Another restriction is that so far these scripts only work with NBO population analysis as provided by the NBO3.1 program available in the various versions of Gaussian. I imagine the listing is similar in NBO5.x and NBO6.x and so it should work if you do the population analysis with them.

The syntax for the single molecule version is:

python fukui.py filename.log filename_minus.log filename_plus.log

For the batch version is:

./fukuiPorLote.sh

(Por Lote means In Batch in Spanish.)

These scripts are available via GitHub. We hope you find them useful, and you do please let us know whether here at the comments section or at our GitHub site.

fchk file errors (Gaussian) Missing or bad Data: RBond


We’ve covered some common errors when dealing with formatted checkpoint files (*.fchk) generated from Gaussian, specially when analyzed with the associated GaussView program. (see here and here for previous posts on the matter.)

Prof. Neal Zondlo from the University of Delaware kindly shared this solution with us when the following message shows up:

CConnectionGFCHK::Parse_GFCHK()
Missing or bad data: Rbond
Line Number 1234

The Rbond label has to do with the connectivity displayed by the visualizer and can be overridden by close examination of the input file. In the example provided by Prof. Zondlo he found the following line in the connectivity matrix of the input file:

2 9 0.0

which indicates a zero bond order between atoms 2 and 9, possibly due to their proximity. He changed the line to simply

2

So editing the connectivity of your atoms in the input can help preventing the Rbond message.

I hope this helps someone else.

%d bloggers like this: