Category Archives: Chemistry

To Chem, or not “Too Chem”? That is the #ChemNobel Question

To chem or not -quite- too chem, that is the ChemNobel question:
Whether ’tis Nobeler in the mind to suffer
The curly arrows of organic fortune
Or to take rays against a sea of crystals
And by diffracting end them.

Me (With sincere apologies to WS)

Every year, in late September -like most chemists- I try to guess who will become the next Nobel Laureate in Chemistry. Also, every year, in early October -like most chemists- I participate in the awkward and pointless discussion of whether the prize was actually awarded to chemistry or not. Indeed, the Nobel prize for chemistry commonly stirs a conversation of whether the accomplishments being recognized lie within the realm of chemistry or biology whenever biochemistry shows its head, however shyly; but the task of dividing chemistry into sub-disciplines raises an even deeper question about the current validity of dividing science into broad branches in the first place and then further into narrower sub-disciplines.

I made a very lazy histogram of all the 178 Laureates since 1904 to 2017 based on subjective and personal categories (figure 1), and the creation of those categories was in itself an exercise in science contemplation. My criteria for some of the tough ones was the following: For instance, if it dealt with phenomena of atomic or sub-molecular properties (Rutherford 1908, Hahn 1944, Zewail 1999) then I placed it in the Chemical Physics category but if it dealt with an ensemble of molecules (Arrhenius 1903, Langmuir 1932, Molina 1995) then Physical Chemistry was chosen. Some achievements were about generating an analysis technique which then became essential to the development of chemistry or any of its branches but not for a chemical process per se, those I placed into the Analytical Chemistry box, like last year’s 2017 prize for electron cryo-microscopy (Dubochet, Frank, Henerson) or like 1923 prize to Fritz Pregl for “the invention of the method of microanalysis of organic substances” for which the then head of the Swedish Academy of Sciences, O. Hammarsten, pointed out that the prize was awarded not for a discovery but for modifying existing methods (which sounds a lot like a chemistry disclaimer to me). One of the things I learnt from this  exercise is that subdividing chemistry became harder as the time moved forward which is a natural consequence of a more complex multi- and interdisciplinary environment that impacts more than one field. Take for instance the 2014 (Super Resolved Fluorescence Microscopy) and 2017 (Cryo-Electron Microscopy) prizes; out of the six laureates, only William Moerner has a chemistry related background a fact that was probably spotted by Milhouse Van Houten (vide infra).

Some of the ones that gave me the harder time: 1980, Gilbert and Sanger are doing structural chemistry by means of developing analytical techniques but their work on sequencing is highly influential in biochemistry that they went to the latter box; The same problem arose with Klug (1982) and the Mullis-Smith duo (1993). In 1987, the Nobel citation for Supramolecular Chemistry (Lehn-Cram-Pedersen) reads “for their development and use of molecules with structure-specific interactions of high selectivity.”, but I asked myself, are these non-covalent-bond-forming reactions still considered chemical reactions? I want to say yes, so placed the Lehn-Cram-Pedersen trio in the Synthesis category. For the 1975 prize I was split so I split the prizes and thus Prelog (stereochemistry of molecules) went into the Synthesis category (although I was thinking  in terms of organic chemistry synthesis) and Cornforth (stereochemical control of enzymatic reactions) went into biochem. So, long story short, chemistry’s impact in biology has always had a preponderant position for the selection of the Nobel Prize in Chemistry, although if we fuse the Synthesis and Inorganic Chemistry columns we get a fairly even number of synthesis v biochemistry prizes.

Hard as it may be to fit a Laureate into a category, trying to predict the winners and even bet on it adds a lot of fun to the science being recognized. Hey! even The Simpsons did it with a pretty good record as shown below. Just last week, there was a very interesting and amusing ACS Webinar where the panelist shared their insights on the nomination and selection process inside the Swedish Academy; some of their picks were: Christopher Walsh (antibiotics); Karl Deisseroth (optogenetics); Horwich and Hartl (chaperon proteins); Robert Bergman (C-H activation); and John Goodenough (Li-ion batteries). Arguably, the first three of those five could fit the biochem profile. From those picks the feel-good prize and my personal favorite is John Goodenough not only because Li-ion batteries have shaped the modern world but because Prof. Goodenough is 96 years old and still very actively working  in his lab at UT-Austin (Texas, US) #WeAreAllGoodEnough. Another personal favorite of mine is Omar Yaghi not only for the development of Metal-Organic-Frameworks (MOFs) but for a personal interaction we had twenty years ago that maybe one day I’ll recount here but for now I’ll just state the obvious: MOFs have shown a great potential for applications in various fields of chemistry and engineering but perhaps they should first become highly commercial for Yaghi to get the Nobel Prize.


W.E. Moerner and B.L. Feringa are now Nobel Laureates. Zare and Moerner have worked in spectroscopy whereas Feringa and Sonogashira are deep into synthesis

Some curiosities and useless trivia: Fred Sanger is the only person to have been awarded the Nobel Prize in Chemistry twice. Marie Curie is the only person to have been awarded two Nobel Prizes in different scientific categories (Physics and Chemistry) and Linus Pauling was awarded two distinct Nobel Prizes (Chemistry and Peace). Hence, three out of the four persons ever to have been awarded two Nobel Prizes did it at least once in chemistry – the fourth is John Bardeen two times recipient of the Nobel Prize in Physics.

Of course the first thing I’ll do next Wednesday right after waking up is checking who got the Nobel Prize in Chemistry 2018 and most likely the second thing will be going to my Twitter feed and react to it, hopefully the third will be to blog about it.

The announcement is only two days away, who is your favorite?




New paper in Tetrahedron #CompChem “Why U don’t React?”

Literature in synthetic chemistry is full of reactions that do occur but very little or no attention is payed to those that do not proceed. The question here is what can we learn from reactions that are not taking place even when our chemical intuition tells us they’re feasible? Is there valuable knowledge that can be acquired by studying the ‘anti-driving force’ that inhibits a reaction? This is the focus of a new manuscript recently published by our research group in Tetrahedron (DOI: 10.1016/j.tet.2016.05.058) which was the basis of Guillermo Caballero’s BSc thesis.



It is well known in organic chemistry that if a molecular structure has the possibility to be aromatic it can somehow undergo an aromatization process to achieve this more stable state. During some experimental efforts Guillermo Caballero found two compounds that could be easily regarded as non-aromatic tautomers of a substituted pyridine but which were not transformed into the aromatic compound by any means explored; whether by treatment with strong bases, or through thermal or photochemical reaction conditions.


These results led us to investigate the causes that inhibits these aromatization reactions to occur and here is where computational chemistry took over. As a first approach we proposed two plausible reaction mechanisms for the aromatization process and evaluated them with DFT transition state calculations at the M05-2x/6-31+G(d,p)//B3LYP/6-31+G(d,p) levels of theory. The results showed that despite the aromatic tautomers are indeed more stable than their corresponding non-aromatic ones, a high activation free energy is needed to reach the transition states. Thus, the barrier heights are the first reason why aromatization is being inhibited; there just isn’t enough thermal energy in the environment for the transformation to occur.


But this is only the proximal cause, we went then to search for the distal causes (i.e. the reasons behind the high energy of the barriers). The second part of the work was then the calculation of the delocalization energies and frontier molecular orbitals for the non-aromatic tautomers at the HF/cc-pVQZ level of theory to get insights for the large barrier heights. The energies showed a strong electron delocalization of the nitrogen’s lone pair to the oxygen atom in the carbonyl group. Such delocalization promoted the formation of an electron corridor formed with frontier and close-to-frontier molecular orbitals, resembling an extended push-pull effect. The hydrogen atoms that could promote the aromatization process are shown to be chemically inaccessible.


Further calculations for a series of analogous compounds showed that the dimethyl amino moiety plays a crucial role avoiding the aromatization process to occur. When this group was changed for a nitro group, theoretical calculations yielded a decrease in the barrier high, enough for the reaction to proceed. Electronically, the bonding electron corridor is interrupted due to a pull-pull effect that was assessed through the delocalization energies.

The identity of the compounds under study was assessed through 1H, 13C-NMR and 2D NMR experiments HMBC, HMQC so we had to dive head long into experimental techniques to back our calculations.

Elements4D – Exploring Chemistry with Augmented Reality

A bit outside the scope of this blog (maybe), but just too cool to overlook. Augmented reality in chemistry education.

Songs | Snaps | Science

This is a guest post from Samantha Morra of, an advertiser on 

Augmented Reality (AR) blurs the line between the physical and digital world. Using cues or triggers, apps and websites can “augment” the physical experience with digital content such as audio, video and simulations. There are many benefits to using AR in education such as giving students opportunities to interact with items in ways that spark inquiry, experimentation, and creativity. There are a quite a few apps and sites working on AR and its application in education.

Elements4D, an AR app from Daqri, allows students explore chemical elements in a fun way while learning about real-life chemistry. To get started, download Elements4D and print the cubes.

There are 6 physical paper cubes printed with different symbols from the periodic table. It takes a while to cut out and put together the cubes, but it…

View original post 475 more words

XIIth Mexican Reunion on Theoretical Physical Chemistry

As every year this month we had the yearly Mexican Reunion on Theoretical Physical Chemistry organized by prominent researchers in the field, such as Dr. Emilio Orgaz (UNAM), Dr. Alberto Vela (CINVESTAV) and many other. Over 150 different works were presented during this edition which took place in Juriquilla, Querétaro at one of the many campuses of the National Autonomous University of Mexico scattered all around the country. Below you can see some pictures from the talks and the first poster session.


This time we contributed with a small poster on a mechanism proposed by Howard Diaz (an undergrad student from UAEM) on the equilibrium transformation of dihydrocinolines into 1-amino-indoles by an intramolecular rearrangement. May this post also serve as the starting point of a -mini-tutorial on how to evaluate a mechanism theoretically using QST3 and IRC in implicitly solvated environments (PCM)


Howard Diaz posing next to his poster

The equilibrium under study and the proposed mechanism  by which it occurs, originally proposed by Frontana-Uribe et al. looks a bit like this:


Dihydrocinolines in equilibrium with 1-aminoindole


Mechanistic proposal by Frontana-Uribe et al.

The energy profile, in which all transition states were calculated with the QST3 method, is presented below, calculated at various levels of theory. Also, the Internal Reaction Coordinate (IRC) connecting both states was calculated and is shown further below in the full poster.

Energy Profile

Energy Profile

From this results we believe that a new mechanistic proposal is needed since the energy barrier for the first step is quite high (~60 kcal/mol) and hence a bit unlikely to occur through that transition state. Nevertheless this is a first approach to elucidating a mechanism and the more knowledge about it the higher the control will be on this chemical transformation.

A full version of the poster is shown below for your convenience (Spanish). See you all at the next RMFQT in Morelia 2014!

Full Poster

Full Poster

#RealTimeChem – Happy birthday DNA!

What a happy coincidence -if indeed it was- that #RealTimeChem week happened to coincide with the sixtieth anniversary of the three seminal papers published in Nature on this day back in 1953, one of which was co-authored by J. Watson and F. Crick; of course I mean the publication for the first time of the structure of deoxyribose nucleic acid, or DNA, as we now call it.

You can get the original Nature papers from 1953 here at: (costs may apply)

Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid 737


Molecular Structure of Nucleic Acids: Molecular Structure of Deoxypentose Nucleic Acids 738

Molecular Configuration in Sodium Thymonucleate 740

Nature’s podcast released two episodes (called ‘pastcast’) to celebrate DNA’s structure’s birthday, one of them is an interview with Dr. Raymond Gosling who in 1953 worked under Dr. Rosalind Franklin at King’s College London in diffractometry of biological molecules. If you haven’t listened to them you can get them here at Of course, the history around the discovery of DNA’s structure is not without controversy and it has been long argued that the work of Franklin and Gossling didn’t get all deserved credit from Watson and Crick. In their paper W&C acknowledge the contribution of the general nature of DNA from the unpublished results by Franklin’s laboratory but that is as far as they went, they didn’t even mention photo 51 which Crick saw at Wilkins laboratory, who in turn got it from Gossling at Franklin’s suggestion. Still, no one can deny that the helical structure with which we are now familiar is their work, and more importantly the discovery of the specific pairing, which according to Gossling was a stroke of genious that probably couldn’t have happened in his own group, but without Franklin’s diffraction and Gossling’s crystallization  there was little they could do. Details about the process used to crystallize DNA can be heard in the aforementioned podcast, along with an inspiring tale of hard work by Dr. Gossling. Go now and listen to it, its truly inspiring.

For me it was not the story of a helix, that I was familiar with; it was the story of the specific pairing of two hélices
– Dr. Raymond Gosling

Famous Photo 51 by Dr. Rosalind Franklin and Raymond Gosling (Source: Wikipedia)

The iconic Photo 51 by Dr. Rosalind Franklin and Raymond Gosling (Source: Wikipedia)

Above, the iconic Photo 51 taken by Franklin and Gossling (have you ever noticed how most scientists refer to Franklin just as Rosalind but no one refers to Watson as James? Gender bias has a role in this tale too) To a trained crystallographer, the helical symmetry is evident from the diffraction pattern but going from Photo 51 to the representation below was the subject of hard work too.

Modern DNA representation (Source: Wikipedia)

Modern DNA representation (Source: Wikipedia)

There are million of pages written during the last 60 years about DNA’s structure and its role in the chemistry of life; the nature of the pairing and the selectivity of base pairs through hydrogen bond interactions, an interaction found ubiquitously in nature; water itself is a liquid due to the intermolecular hydrogen-bonds, which reminds us about the delicate balance of forces in biochemistry making life a delicate matter. But I digress. Millions of pages have been written and I’m no position of adding a meaningful sentence to them; however, it is a fascinating tale that has shaped the course of mankind, just think of the Human Genome Project and all the possibilities both positive and negative! DNA and its discovery tale will continue to amaze us and inspire us, just like in 2011 it inspired the Genetech company to set a Guiness World Record with the largest human DNA helix.

Genetech SF, Cal. USA (Source

Genetech SF, Cal. USA (Source

Happy birthday, DNA!

%d bloggers like this: