Category Archives: Chemistry

New paper in Tetrahedron #CompChem “Why U don’t React?”

Literature in synthetic chemistry is full of reactions that do occur but very little or no attention is payed to those that do not proceed. The question here is what can we learn from reactions that are not taking place even when our chemical intuition tells us they’re feasible? Is there valuable knowledge that can be acquired by studying the ‘anti-driving force’ that inhibits a reaction? This is the focus of a new manuscript recently published by our research group in Tetrahedron (DOI: 10.1016/j.tet.2016.05.058) which was the basis of Guillermo Caballero’s BSc thesis.



It is well known in organic chemistry that if a molecular structure has the possibility to be aromatic it can somehow undergo an aromatization process to achieve this more stable state. During some experimental efforts Guillermo Caballero found two compounds that could be easily regarded as non-aromatic tautomers of a substituted pyridine but which were not transformed into the aromatic compound by any means explored; whether by treatment with strong bases, or through thermal or photochemical reaction conditions.


These results led us to investigate the causes that inhibits these aromatization reactions to occur and here is where computational chemistry took over. As a first approach we proposed two plausible reaction mechanisms for the aromatization process and evaluated them with DFT transition state calculations at the M05-2x/6-31+G(d,p)//B3LYP/6-31+G(d,p) levels of theory. The results showed that despite the aromatic tautomers are indeed more stable than their corresponding non-aromatic ones, a high activation free energy is needed to reach the transition states. Thus, the barrier heights are the first reason why aromatization is being inhibited; there just isn’t enough thermal energy in the environment for the transformation to occur.


But this is only the proximal cause, we went then to search for the distal causes (i.e. the reasons behind the high energy of the barriers). The second part of the work was then the calculation of the delocalization energies and frontier molecular orbitals for the non-aromatic tautomers at the HF/cc-pVQZ level of theory to get insights for the large barrier heights. The energies showed a strong electron delocalization of the nitrogen’s lone pair to the oxygen atom in the carbonyl group. Such delocalization promoted the formation of an electron corridor formed with frontier and close-to-frontier molecular orbitals, resembling an extended push-pull effect. The hydrogen atoms that could promote the aromatization process are shown to be chemically inaccessible.


Further calculations for a series of analogous compounds showed that the dimethyl amino moiety plays a crucial role avoiding the aromatization process to occur. When this group was changed for a nitro group, theoretical calculations yielded a decrease in the barrier high, enough for the reaction to proceed. Electronically, the bonding electron corridor is interrupted due to a pull-pull effect that was assessed through the delocalization energies.

The identity of the compounds under study was assessed through 1H, 13C-NMR and 2D NMR experiments HMBC, HMQC so we had to dive head long into experimental techniques to back our calculations.

Elements4D – Exploring Chemistry with Augmented Reality

A bit outside the scope of this blog (maybe), but just too cool to overlook. Augmented reality in chemistry education.

Songs | Snaps | Science

This is a guest post from Samantha Morra of, an advertiser on 

Augmented Reality (AR) blurs the line between the physical and digital world. Using cues or triggers, apps and websites can “augment” the physical experience with digital content such as audio, video and simulations. There are many benefits to using AR in education such as giving students opportunities to interact with items in ways that spark inquiry, experimentation, and creativity. There are a quite a few apps and sites working on AR and its application in education.

Elements4D, an AR app from Daqri, allows students explore chemical elements in a fun way while learning about real-life chemistry. To get started, download Elements4D and print the cubes.

There are 6 physical paper cubes printed with different symbols from the periodic table. It takes a while to cut out and put together the cubes, but it…

View original post 475 more words

XIIth Mexican Reunion on Theoretical Physical Chemistry

As every year this month we had the yearly Mexican Reunion on Theoretical Physical Chemistry organized by prominent researchers in the field, such as Dr. Emilio Orgaz (UNAM), Dr. Alberto Vela (CINVESTAV) and many other. Over 150 different works were presented during this edition which took place in Juriquilla, Querétaro at one of the many campuses of the National Autonomous University of Mexico scattered all around the country. Below you can see some pictures from the talks and the first poster session.


This time we contributed with a small poster on a mechanism proposed by Howard Diaz (an undergrad student from UAEM) on the equilibrium transformation of dihydrocinolines into 1-amino-indoles by an intramolecular rearrangement. May this post also serve as the starting point of a -mini-tutorial on how to evaluate a mechanism theoretically using QST3 and IRC in implicitly solvated environments (PCM)


Howard Diaz posing next to his poster

The equilibrium under study and the proposed mechanism  by which it occurs, originally proposed by Frontana-Uribe et al. looks a bit like this:


Dihydrocinolines in equilibrium with 1-aminoindole


Mechanistic proposal by Frontana-Uribe et al.

The energy profile, in which all transition states were calculated with the QST3 method, is presented below, calculated at various levels of theory. Also, the Internal Reaction Coordinate (IRC) connecting both states was calculated and is shown further below in the full poster.

Energy Profile

Energy Profile

From this results we believe that a new mechanistic proposal is needed since the energy barrier for the first step is quite high (~60 kcal/mol) and hence a bit unlikely to occur through that transition state. Nevertheless this is a first approach to elucidating a mechanism and the more knowledge about it the higher the control will be on this chemical transformation.

A full version of the poster is shown below for your convenience (Spanish). See you all at the next RMFQT in Morelia 2014!

Full Poster

Full Poster

#RealTimeChem – Happy birthday DNA!

What a happy coincidence -if indeed it was- that #RealTimeChem week happened to coincide with the sixtieth anniversary of the three seminal papers published in Nature on this day back in 1953, one of which was co-authored by J. Watson and F. Crick; of course I mean the publication for the first time of the structure of deoxyribose nucleic acid, or DNA, as we now call it.

You can get the original Nature papers from 1953 here at: (costs may apply)

Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid 737


Molecular Structure of Nucleic Acids: Molecular Structure of Deoxypentose Nucleic Acids 738

Molecular Configuration in Sodium Thymonucleate 740

Nature’s podcast released two episodes (called ‘pastcast’) to celebrate DNA’s structure’s birthday, one of them is an interview with Dr. Raymond Gosling who in 1953 worked under Dr. Rosalind Franklin at King’s College London in diffractometry of biological molecules. If you haven’t listened to them you can get them here at Of course, the history around the discovery of DNA’s structure is not without controversy and it has been long argued that the work of Franklin and Gossling didn’t get all deserved credit from Watson and Crick. In their paper W&C acknowledge the contribution of the general nature of DNA from the unpublished results by Franklin’s laboratory but that is as far as they went, they didn’t even mention photo 51 which Crick saw at Wilkins laboratory, who in turn got it from Gossling at Franklin’s suggestion. Still, no one can deny that the helical structure with which we are now familiar is their work, and more importantly the discovery of the specific pairing, which according to Gossling was a stroke of genious that probably couldn’t have happened in his own group, but without Franklin’s diffraction and Gossling’s crystallization  there was little they could do. Details about the process used to crystallize DNA can be heard in the aforementioned podcast, along with an inspiring tale of hard work by Dr. Gossling. Go now and listen to it, its truly inspiring.

For me it was not the story of a helix, that I was familiar with; it was the story of the specific pairing of two hélices
– Dr. Raymond Gosling

Famous Photo 51 by Dr. Rosalind Franklin and Raymond Gosling (Source: Wikipedia)

The iconic Photo 51 by Dr. Rosalind Franklin and Raymond Gosling (Source: Wikipedia)

Above, the iconic Photo 51 taken by Franklin and Gossling (have you ever noticed how most scientists refer to Franklin just as Rosalind but no one refers to Watson as James? Gender bias has a role in this tale too) To a trained crystallographer, the helical symmetry is evident from the diffraction pattern but going from Photo 51 to the representation below was the subject of hard work too.

Modern DNA representation (Source: Wikipedia)

Modern DNA representation (Source: Wikipedia)

There are million of pages written during the last 60 years about DNA’s structure and its role in the chemistry of life; the nature of the pairing and the selectivity of base pairs through hydrogen bond interactions, an interaction found ubiquitously in nature; water itself is a liquid due to the intermolecular hydrogen-bonds, which reminds us about the delicate balance of forces in biochemistry making life a delicate matter. But I digress. Millions of pages have been written and I’m no position of adding a meaningful sentence to them; however, it is a fascinating tale that has shaped the course of mankind, just think of the Human Genome Project and all the possibilities both positive and negative! DNA and its discovery tale will continue to amaze us and inspire us, just like in 2011 it inspired the Genetech company to set a Guiness World Record with the largest human DNA helix.

Genetech SF, Cal. USA (Source

Genetech SF, Cal. USA (Source

Happy birthday, DNA!

Article in ‘Ciencia y Desarrollo’ (Science and Development)

Here is a link to an article I was invited to write by my good old friend, Dr. Eddie López-Honorato from CINVESTAV – Saltillo; Mexico, for the latest issue of the journal ‘Ciencia y Desarrollo’ (Science and Development) to which he was a guest editor. ‘Ciencia y Desarrollo’ is a popular science magazine edited by the National Council for Science and Technology (CONACyT) of which I’ve blogged before.

This magazine is intended for people interested in science with a general knowledge of it but not necessarily specialized in any field. With that in mind, I decided to write about the power of computational chemistry in predicting some phenomena while shedding light in certain aspects of chemistry that are not that readily available through experiments. The article is titled ‘Chemistry without flasks: Simulating chemical reactions‘. The link will take you to the magazine’s website which is in Spanish, as is the article itself, and only to the first page; so, below I translated the piece for anyone who could be interested in reading it (Hope I’m not infringing any copyright laws!). Don’t forget to also check out Dr. López-Honorato’s blog on nuclear energy research and the development of materials for nuclear waste containment! Encourage him to blog more often by liking and following his blog.


Chemistry without flasks?
Typically we think of a chemist as a scientist who, dressed in a white robe and protected with safety glasses and latex gloves, busily working within a laboratory, surrounded by measurement equipment, glassware and bottles with colored substances; pours one substance onto other substance, transforming them into new substances while noting that the chemical reaction occurs through color changes, heat release , perhaps gas, and occasionally even an explosion.
Thus chemistry, the study of the material processing involves active experimentation to accomplish chemical reactions subsequently confirmed, although indirectly, that the changes have been conducted in the microscopic world, moreover, in the molecular and atomic world. The chemist plans these changes based on the knowledge he has of the chemical properties of the substances of which he started and, like any other substance, are due to its molecular structure, i.e., the spatial arrangement of the atoms that form it.
Under this archetypal image just posed, then it’s at least funny to think that there is a branch of chemistry named Theoretical Chemistry.

What is theoretical chemistry?
Theoretical chemistry is a kind of bridge between chemistry and physics; using laws and equations that govern the subatomic world, to calculate the molecular structure of a substance, more specifically calculate the distribution of electrons surrounding the molecule forming a cloud, which interact with the electron cloud of another molecule to form a new substance. It is based on the knowledge of the electron density cloud or we can understand and predict the chemical properties of any substance. We can then define theoretical chemistry as the set of physical theories that describe the distribution and properties of the electron cloud belonging to a molecule, in this particular mathematical description we call electronic structure and this is the starting point for descriptions and chemical predictions.

What is it good for?
Through theoretical chemistry we can find answers to fundamental questions about the structure of matter. Consider a molecule of water, which has the chemical formula H2O. This formula implies that there are two hydrogen atoms attached to an oxygen atom But what spacial structure does a water molecule have? The simplest geometry it could take would be a linear structure, in which the angle formed by the three atoms is 180 °. However, the water molecule has an angle of 109 °, far from a linear structure. In Figure 2 we can see the result of the calculation of the electronic structure of H2O, it observed that the electron cloud that exists on the oxygen atom also has a place in space and thus push the hydrogen atoms bringing them together instead of allowing them to take a  more comfortable conformation.
Figure 2. Oxygen remaining electrons (red cloud around the oxygen atom) that are not chemically push the hydrogen atoms towards each other.

The industrial area currently impacted by the application of theoretical chemistry is the pharmacist, as they generate a new drug involves significant investment in financial and human resources, so predicting the properties of a molecule with pharmacological activity before synthesizing is highly attractive. Therefore it has been generated within the theoretical chemistry field, otherwise known as branch Rational Drug Design.
Drugs acting on our organism when active molecules interact directly with the various proteins which are distributed in the tissue cells. If the structure of the protein is known and we attack is known also a drug which acts on it, then we can design similar drugs having greater efficacy in the treatment of diseases. But it is not only fit one molecule to another, but to calculate the energy of interaction, the energy of dissolution and the probability that this interaction can be observed experimentally (Figure 3). The calculation of the interaction energy between the drug and the protein tells how strongly attract each other, a weak attraction drug will result in a low efficiency, while a greater attraction involve a more effective drug.
How do you calculate a molecule?

All matter exists in the universe is made of atoms, which in turn are composed of a nucleus of protons and neutrons surrounded by a cloud of electrons. When two or more atoms combine to form a molecule combining do their electron clouds and how do these combinations are best described by the equations of quantum mechanics, the branch of physics that describes the behavior of the subatomic world. However, due to its complexity, the equations of quantum mechanics can only be accurately resolved in the simplest cases such as the hydrogen atom, which consists of a single electron orbiting a proton. We must therefore resort to a range of methods and approaches to tackle cases of chemical interest and even biological.
For years the only available computers could solve the approximate equations for small molecules, no later than thirty atoms, which which can be interesting, but not entirely useful. Today modern supercomputing equipment (which may amount to up to tens or even hundreds of powerful computers connected together to work cooperatively) allow us to make models with hundreds of atoms molecules such as proteins or DNA fragments.
While the software available to perform these calculations is developed continuously for the last thirty years has been the progress in the design of computer systems able to perform thousands of operations per second the cornerstone that has made the theoretical chemistry a predictive tool commonly used. Today the branch known as Molecular Dynamics, which studies the interactions between molecules over time, has benefited from the development of the latest game consoles, as their processors, known as graphics processing units (GPUs , for its acronym in English) are able to perform calculations in parallel: Many of the images seen in our video games are actually calculated, not animated, this means that the console must calculate how to answer each item on the screen According to each stimulus we introduce. Conversely, if the images were animated, the answers would be always the same and the game would become unrealistic. Each game event should be calculated almost immediately to maintain its fluidity and emotion, in such a way that these GPUs have to be able to perform several mathematical operations simultaneously.
Traditionally molecular dynamics is based on the equations of classical physics, which only see the time evolution of molecules like solid objects collide, hundreds of molecules floating in water or other solvent. With the advent of GPUs can include dynamic calculating the electronic structure so we can peek into biological processes such as DNA replication or the passage of nutrients through a channel protein embedded in the membrane of a cell.
Since the fundamental understanding of the distribution of electrons in a molecule, its structure and properties to rational drug design, new materials based on molecular modeling theoretical chemistry is a powerful tool which is constantly progressing. The development of computer systems increasingly powerful detail allows us to meet the electronic processes involved in a chemical reaction while we can predict the real-time progress of molecular transformations. All this brings us ever closer to the dream of modern alchemists: transform matter to obtain substances with properties designed to pleasure.
In the nineteenth century, the American philosopher Ralph Waldo Emerson, wrote: “Chemistry was born from the dream of the alchemists to turn cheap metals into gold. By failing to do so, they have accomplished much more important things. ” And yes. Today we delve into the innermost secrets of nature not only to understand how it works but also to modify its operation on our behalf.

%d bloggers like this: