Category Archives: Science

#LatinXChem – 2021 edition


Once again, as the year before, I woke to my phone resembling a slot machine from any Vegas casino. #LatinXChem became a Trending Topic on Twitter early from it’s start on september 20th 2021, this year the Twitter poster session was divided into eleven categories (Ana, Bio, Comp, Edu, Eng, Env, Inorg, Mat, Nano, Org, Phys) with Nano and Comp being the ones with the most participants.

Last year, due to the 2020 COVID-19 pandemic, most if not all scientific conferences were cancelled and in some cases replaced by an endless stream of webinars, some with virtual spaces for hanging out and networking with colleagues around the world. Poster sessions on massive platforms like Twitter aren’t new, the yearly #RSCPoster session was already a popular event even before the many lockdowns, but only a few have amassed the number of participants #LatinXChem has. From its conception, #LatinXChem was thought not to be exclusive for the Latin community, but rather as an event created from Latin America for the world; it’s now time to move it forward into the next level, making it a brand, not just a yearly event. Through #LatinXChem many activities could be sponsored, students could be promoted, and courses could be taught, all covered under the same flag of a global identity with one core goal in mind: showcasing and promoting the chemistry work done by underrepresented groups anywhere in the planet. As this pandemic has clearly shown, science illiteracy is dangerous at various levels, from the health choices we make in our homes to the policies imposed by governments.

To check all the fantastic works presented in this edition just go to Twitter and add the name of the category as described above to the hashtag #LXChem (e.g. #LXChemComp will hash all the posters registered in the computational chemistry category), make sure you like and share your favorite pieces of research but above all make sure you engage with the people behind the research, you won’t regret making new acquaintances who share your scientific interests.

A cool new feature of this year’s edition is the video interviews 8 Minutes with, featuring very personal and inspiring interviews with Latin scientists like Adrian Roitberg, Alan Aspuru-Guzik, and my good friend Javier Vela, but also with awardees from the previous edition. These interviews are also available on YouTube where new videos are uploaded continuously. Although we know people is kinda overloaded with webinars after so many months of distancing, we wanted to keep a tradition of having lectures from Nobel Laureates within the framework of our event. Last year we had the honor of having Prof. Frances Arnold gave the last lecture and this year we’ll have Profs. Roald Hoffmann and Rudolf Marcus.

At #LatinXChem we know chemistry, and we prove it day in and day out sharing our work, our experiences, and our joy for doing exciting scientific research.

Worldwide CompChem in the Fight against COVID-19


The war against COVID-19 has been waged in many fronts. The computational chemistry community has done their share during this pandemic to put forward a cure, a vaccine, or a better understanding of the molecular mechanisms behind the human infection by the SARS-CoV-2 virus. As few vaccines show currently their heads and start making their way around the globe to stop the spreading, amidst a climate of disinformation, distrust and political upheaval, all of which pose several challenges yet to be faced aside from the technical and scientific ones.

This is by no means a comprehensive review of the literature, in fact, most of the cited literature herein was observed in Twitter under the #CompChem and #COVID combined hashtags; Summarizing the research by the CompChem community on COVID-19 related topics in a single blog-post would be near to impossible—I trust a book is being written on it as I type these lines.

The structural elucidation of the proteins associated to the SARS-CoV-2 virus is probably the first step required in designing chemical compounds capable of modifying their functions and altering their life-cycle without altering the biochemistry of the hosts. The Coronavirus Structural Taskforce has elucidated the structure of 28 proteins of SARS-CoV-2 aside from the 300+ proteins from the previous SARS-CoV virus using the tools from the FoldIt at home game based on the Rosetta program to heuristically predict the structure of these proteins. Structure based drug design rely on the knowledge of the structure of the active site (hence the name), but in the case of newly discovered proteins for which homology modeling is not entirely feasible, a ligand-based approach named D3Similarity was developed early in the pandemic for identifying the possible active sites by the group of Prof. Zhijian Xu. Mapping of the of the viral genome and proteome was also achieved early on during the first dates of lockdown in the American continent. The information was readily made available and usable for further studies which prompts another challenge: the rapid dissemination, review and evaluation of information to make scientifically sound claims and make data-based decisions. In this regard, the role of preprints cannot be stressed enough. Without a rapid communication, scientific results cannot generate a much needed critical mass to turn all these data into knowledge. As evidenced by the vast majority of the links present in this post, ChemRXiv from the ACS served the much needed function to gather, link and put the data for scientific evaluation out there in order to accelerate the discovery of solutions to the various steps of the virus’ reproductive cycle through various strategies.

The role of supercomputing has been paramount worldwide to the various efforts made in CompChem (read the C&EN piece) in various fronts from structural elucidation, such as the AI driven structural modelling of spike proteins and their infection mechanism led by Prof. Rommie Amaro (UCSD) and Dr. Arvind Ramanathan which was celebrated by the Bell Prize, to development of vaccines. Many Molecular Dynamics simulations have been performed on potential inhibitors of proteins such as the spike protein, in some cases these simulations coupled with cryo-EM microscopy allowed for the elucidation of the hinging mechanism of these spike proteins, their thermodynamic properties, and all atoms-simulations assessed the rigidity of the receptor as the cause of its infectivity. Still, owning these computing resources isn’t always cost effective; that’s why there have been outsourced to companies such as Amazon web services as Pearlman did for the QM/DFT calculations of the binding energy of several drug candidates for the inhibition of the virus’ main protease (MPro). Many other CADD studies are available (here, here, and here). Researchers from all around the world can chip in and join the effort by reaching out to the COVID-19 High Performance Computing Consortium (HPC) which brings together some of the most advanced computing systems to the hands of private and academic researchers with relevant projects aimed to the study of the virus. On the other side of the Atlantic, the Partnership for Advanced Computing in Europe (PRACE) also provides access to advanced computing services for research. As an effort to keep all the developing information curated and concentrated, the COVID-19 Molecular Structure and Therapeutics Hub was created to provide a community-driven data repository and curation service for molecular structures, models, therapeutics, and simulations related to computational research related to therapeutic opportunities.

As described above, molecular dynamics simulations are capital in the assessment of how drugs interact with proteins. But molecular dynamics can only do so much as they’re computing intensive so, the use of Polarizable Force Fields (PFF) algorithms to obtain results in the microseconds regime with high-resolution sampling methods which have been applied also to the modeling of the MPro protein; the phase space is sampled by different MD trajectories which are then tested and selected. Aside from classical simulations, artificial intelligence predictions and docking calculations, also quantum mechanical calculations have been employed in the search for the most intimate interactions governing the mechanisms of inhibition of proteins. In this front, a Fragment Molecular Orbital based analysis was carried out to find which residues in MPro interacted the most with a given inhibitor.

Virtual screening is at the heart of the computationally aided drug discovery process, specially high-throughput virtual screening such as the one performed by the group of Andre Fischer at Basel, in which 11 potential drugs were narrowed from a pool of over 600 million compounds that were analyzed as potential protease inhibitors. Repurposing of antiviral drugs, and other entry-inhibiting compounds, is also a major avenue explored in the search for treatments; in the linked study by Shailly Tomar et al. antiviral drugs which are also anti inflammatory are believed to take care of lung inflammation and injury associated to the infection at the same time they tend to disrupt the virus’ infection mechanism. The comeback of Virtual Reality can make virtual screening more cooperative even during lockdown conditions and more ‘tangible’ as the company Nanome has proven with their COVID-19 Town Hall meetings which aim to the modeling of proteins in 3D space. Aside from the de novo and repurposing efforts, the search for peptides against infection by SARS-CoV-2 was an important topic (here and here). More recently, Skariyachan and Gopal turn to natural products from herbal origins for their virtual screening (molecular docking and dynamics). In their perspective the chemical complexity achieved through biosynthesis can overcome the bottleneck of chemical discovery while at the same time turning to the ancient practices of herbal remedies described in Ayurveda. Other researchers like Manish Manish have also turned to libraries of 500,000+ natural compounds to find potential drugs for MPro.

The year is coming to an end but not the pandemic in any way. Now, with the advent of new strains, and the widespread vaccination effort put in place, it is more important than ever to keep the fight strong in our labs but also in our personal habits and responsibilities—the same advices that were given at the beginning of the year are still in effect today and will continue to be for the months to come. I want to wish everyone who reads this a happy holiday season, but above all I want to pay a small tribute to the scientists working relentlessly in one of the largest coordinated scientific efforts in modern history, one that can only be compared to the Moon landing or the Manhattan Project; to those scientists and all the healthcare personnel, may you find rest soon, may your efforts never go unnoticed: Thank you for your service.

Mario Molina, Nobel Laureate. Rest In Peace


Prof. Mario Molina was awarded the Nobel Prize in Chemistry in 1995, the same year I started my chemistry education at the chemistry school from the National Autonomous University of Mexico, UNAM, the same school from where he got his undergraduate diploma. To be a chemistry student in the late nineties in Mexico had Prof. Molina as a sort of mythical reference, something to aspire to, a role model, the sort of representation the Latinx and other underrepresented communities still require and seldom get.

I saw him several times at UNAM, where he’d pack any auditorium almost once a year to talk about various research topics, but I remember distinctly the first time I sort of interacted with him. It was 1997 and I attended my first congress, the 5th North America Chemistry Congress. Minutes before the official inauguration which he was supposed to preside, I caught a glimpse of him in the hallways near the main conference room. Being only 19 years old, I thought it’d be a good idea to chase him, ask for his autograph and a picture. He was kind enough not to brush me off and took just a minute to shake my hand, sign my book of abstracts, and get his picture taken with me. But cameras back then relied on the user to place a roll of film correctly. I did not; so the picture, although it happened, it doesn’t exist. Because of this and other anecdotes, that congress cemented my love for chemistry. I never asked for a second picture in the few subsequent occasions I had the pleasure to hear him talk.

Prof. Molina was an advocate of green and sustainable sources of energies. His work predicted the existence of a hole in the ozone layer and his struggle brought change into the banning of CFCs and other substances which interfere with the replenishment of ozone in the sub-stratosphere. Today, his legacy remains but also do his pending battles in the quest for new policies that favor the use of green alternative forms of energy. May he rest in peace and may we continue his example.

Women in #CompChem and the rest of STEM


In the past I’ve avoided this topic for various reasons. First, because I strongly believe that focusing on labels perpetuates them, and as scientists, we should always rise above them, for is science and not scientists what’s important. I remember my former PhD advisor, Prof. Cogordan, saying that “Liberties are exercised, not demanded“. Take Rosa Parks, for instance, her refusal to move to the back of the bus was an exercise of her liberty, and one that moved to a profound change, alas not without turmoil. But should I really call it a label? since it applies to roughly half the potential brain power available in the planet it then becomes a relevant question. Are equality and political correctness mutually exclusive terms?

It could be argued that I talk from a privileged position being a male scientist but since I’m a Mexican, non-white, non-US-based, male scientist those privileges are only so many.

I first began drafting this post way back before November 2016, when the misogyny displayed by a presidential candidate was in everyone’s mind to such a large extent that even when it even seemed prone to cause his demise it didn’t. The women’s march in D.C. has proven the topic to be still quite relevant though, and next April 22nd, Earth Day, a scientists march will take place to protest against policies that put science -and therefore mankind- in jeopardy. Some particular issues associated with the march will be the communication gag orders against scientific federal agencies; the consequences of the travel-ban to scientists from black-listed countries and, of course, the threat of having a misogynistic environment on the status of women in STEM careers.

Fact: There is a clear selection bias since there is still a large number disparity between men and women in academia throughout the world and since the number of academic position is growing at a much lower rate than the number of scientists competing for such positions, the race has become tighter and usually women take the worst part of the deal. There is a leaking pipeline in which women don’t reach the end of the race. I imagine in some cases it may have to do with maternity as it is still conservatively perceived by most countries but issues like harassment and condescension are not to be ignored.
Fact: Scientific curiosity is innate to all human beings -which confirms the above mentioned bias- therefore talking about encouraging young women to pursuit a career in STEM is plain stupid; they don’t need to be encouraged they must stop being discouraged somewhere along the path. The playing field for both genders should be leveled or science risks loosing half the population in these dire times in which all the brain power available is much needed. Also, I fear the continuous talk about these disadvantages could be off-putting for future generations of women who might be interested in undertaking STEM careers. Leveling the field for female and male scientists should be done and not just demanded but details about the mechanisms to accomplish it are still unclear and vary from one institution to another. Here in Mexico, for instance, all public universities have collective contracts, therefore every scientist in a given level earns as much as another in the same level. In other countries salaries are personally negotiated and therefore each scientists earnings vary, which has led to women earning less on average. Now, the ease with which levels are climbed within an institution are also a matter for debate. Does this mean that earnings and positions are the main problems women face in academia? Could they be the best starting points? Is the rate of enrollment the root of the problem? If so, are us teachers and professors to blame?

Another reason why I avoided this topic was because it would seem so patronizing on my part to give a shout-out to women whose work in computational chemistry I so much admire when I myself could only aspire to one day have work of their quality. They definitely don’t need my praises because they have well earned all our admiration. Nonetheless, here is a link to a great directory of women working in computational chemistry in which some great names are found such as Anna Krylov, Gloria Tabacchi, Romelia Salomón, Patricia Hunt, and so many more great scientists from all over the world. Here in Mexico we count with names such as Margarita Bernal, Patrizia Calaminici, Annia Galano, Estela Mayoral and so many other. It is hard to make a comprehensive list, and as I said before I could only aspire to have work with the same quality as theirs. The importance of recognizing and promoting women to take a career in computational chemistry will in short be addressed by the FemEx-NL-2017 conference next June 22nd in the Netherlands; their motto is “Promoting female excellence in theoretical and computational chemistry”, certainly a worthy and noble endeavor for a problem far from solved.  

Perhaps another good reason for writing this post lies in the image below. It is a true statement but we should analyze the causality for it and fix whatever it is we’re doing wrong because it is certainly not the plumbing:

I have a daughter. I want her to be able to do whatever she wants when she grows up without deterrence from unfairness. I want a world for her without labels so she never has the option of playing ‘The Woman Card’. It wouldn’t be fair for anyone around her.

This wont be the last post on this topic. Please share your views in the comments and criticism section. They are all welcome.

.

Maru Sandoval M.Sc. – Our First Graduate Thesis


It is with great pride that I’d like to announce that for the first time we have a Masters Student graduated from this Comp.Chem. lab: María Eugenia “Maru” Sandoval-Salinas has finished her graduate studies and just last Friday defended her thesis admirably earning not only the degree of Masters of Science in Chemistry but doing so with the highest honors given by the National Autonomous University of Mexico.

Maru’s thesis is for many reasons a landmark in this lab not only because it is the first graduate thesis published from our lab but also the first document on our work about the study of Photosynthesis, a long sought after endeavor now closer to publication. It must also be said that Maru came to this lab when she was an undergraduate student five years ago when I just recently joined UNAM as a researcher fresh out of a postdoc stay. After getting her B.Sc. degree and publishing an article in JCTC (DOI: 10.1021/ct4004178) she now is about to publish more papers that I’m sure will be as highly ranked as the previous one. Thus, Maru was a pioneer in our lab giving it a vote of confidence when we had little to nothing to show for; thanks to her hard work and confidence, along with that of the students who have followed her, we managed to succeed as a consolidated research group in the field of computational chemistry.

More specifically, her thesis centered around finding a mechanism for the excitonic transference between pigments (bacteriochlorophyl-a, BChl-a) in the Fenna-Matthews-Olson (FMO) complex, a protein trimer with seven BChl-a molecules in each monomer, located between the antenna complex and the reaction center in green sulfur bacteria. Among the possible mechanisms explored were Förster’s theory, a modification to Marcus’ theory and finally we explored the possibility of Singlet Fission occurring between adjacent molecules with the help of Dr. David Casanova from the Basque Country University where Maru took a short research stay last autumn. Since nature doesn’t conform to any specific mechanism -specially in a complex arrangement such as the FMO- then it could be possible that a combination of the above might also occur but lets just wait for the papers to be published to discuss it. Calculations were performed through the TD-DFT and the C-DFT formalisms using G09 and Q-Chem; comparing experimental data in CH3OH (SMD implicit calculations with the SVWN5 functional) were undertaken previously for selection of the level of theory.

Now, after two original theses written and successfully defended, an article published in JCTC and more in process, at least five posters, a couple of oral presentations and countless hours at her desk, Maru will go pursuit a PhD abroad where I’m sure she will exceed anyone’s expectations with her work, drive, dedication and scientific curiosity. Thank you, Maru, for all your hard work and trust when this lab needed it the most, we wish you the best for you earn it. You will surely be missed.

Atoms in Molecules (QTAIM) – Flash lesson


As far as population analysis methods goes, the Quantum Theory of Atoms in Molecules (QTAIM) a.k.a Atoms in Molecules (AIM) has become a popular option for defining atomic properties in molecular systems, however, its calculation is a bit tricky and maybe not as straightforward as Mulliken’s or NBO.

Personally I find AIM a philosophical question since, after the introduction of the molecule concept by Stanislao Cannizzaro in 1860 (although previously developed by Amadeo Avogadro who was dead at the time of the Karlsruhe congress), the questions of whether or not an atom retains its identity when bound to others? where does an atom end and the next begins? What are the connections between atoms in a molecule? are truly interesting and far deeper than we usually consider because it takes a big mental leap to think about how matter is organized to give rise to substances. Particularly I’m very interested with the concept of a Molecular Graph which in turn is concerned with the way we “draw lines” to form conceptual molecules. Perhaps in a different post we can go into the detail of the method, which is based in the Laplacian operator of the electron density, but today, I just want to collect the basic steps in getting the most basic AIM answers for any given molecule. Recently, my good friend Pezhman Zarabadi-Poor and I have used rather extensively the following procedure. We hope to have a couple of manuscripts published later on. Therefore, I’ve asked Pezhman to write a sort of guest post on how to run AIMALL, which is our selected program for the integration algorithm.

The first thing we need is a WFN or WFX file, which contains the wavefunction in a Fortran unformatted file on which the Laplacian integration is to be performed. This is achieved in Gaussian09 by incluiding the keyword output=wfn or output=wfx in the route section and adding a name for this file at the bottom line of the input file, e.g.

filename.wfn

(NOTE: WFX is an eXtended version of  WFN; particularly necessary when using pseudopotentials or ECP’s)

Analyzing this file requires the use of a third party software such as AIMALL suite of programs, of which the standard version is free of charge upon registration to their website.

OpenAIMStudio (the accompanying graphical interface) and select the AIMQB program from the run menu as shown in figure 1.

 

Figure 1

Figure 1

Select your WFN/WFX file on which the calculation is to be run. (Figure 2)

 

Figure 2

Figure 2

You can control several options for the integration of the Laplacian of the electron density as well as other features. If your molecules are simple enough, you may go through with a successful and meaningful calculation using the default settings. After the calculation is finished, several result files are obtained. We’ll work in this tutorial only with *.mpgviz (which contains information about the molecular graph, MG) and *.sum (which contains all of  needed numerical data).

Visualization of the MG yields different kinds of critical points, such as: 1) Nuclear Attractor Critical Points (NACP); 2) Bond Critical Points (BCP); 3) Ring CP’s (RCP); and 4) Cage CP’s (CCP).

Of the above, BCP are the ones that indicate the presence of a chemical bond between two atoms, although this conclusion is not without controversy as pointed out by Foroutan-Njead in his paper: C. Foroutan-Nejad, S. Shahbazian and R. Marek, Chemistry – A European Journal, 2014, 20, 10140-10152. However, at a first approximation, BCP’s can help us to explore chemical interactions.

Now, let’s go back to visualizing those MGs (in our examples we’ve used methane and ethylene and acetylene). We open the corresponding *.mpgviz file in AIMStudio and export the image from the file menu and using the save as picture option (figure 3).

Figure 3

Figure 3

The labeled atoms are NACP’s while the green dots correspond to BCP’s. Multiplicity of a bond cannot be discerned within the MG; in order to find out whether a bond is a single, double or triple bond we have to look into the *.sum file, in which we’ll take a look at the bond orders between pairs of atoms in the section labeled “Diatomic Electron Pair Contributions and Delocalization Data” (Figure 4).

Figure 4

Figure 4

Delocalization indexes, DI’s, show the approximate number of electrons shared between two atoms. From the above examples we get the following DI(C,C) values: 1.93 for C2H4 and 2.87 for C2H2; on the other hand, DI(C,H) values are  0.98 for CH4, 0.97 in C2H4 and 0.96 in C2H2. These are our usual bond orders.

This is the first part of a crash tutorial on AIM, in my opinion this is the very basics anyone needs to get started with this interesting and widespread method. Thanks to all who asked about QTAIM, now you have your long answer.

Thanks a lot to my good friend Dr Pezhman Zarabadi-Poor for providing this contribution to the blog, we hope you all find it helpful. Please share and comment.

Science in the World Cup


So the World Cup is once again on top of us. I’m not a Football (Soccer) enthusiast but I’ve got to admit that the expectation of such a large and widely covered event is pretty contagious. This year, however, I’m very excited about the inaugural kick-off ceremony because a paraplegic teen will be the one to set the ball in motion, thanks to the use of an exoskeleton developed by the illustrious Brazilian researcher, Dr. Miguel Nicolelis, this patient will not only walk again but also perform a feat of equilibrium: kicking a football. More impressive than the exoskeleton itself is the brain-computer-machine interface since the patient will control the entire process by himself. Miguel Nicolelis is widely known and highly regarded in the scientific community; I’m not sure if he is that famous outside academia, but if he isn’t, he should be. The natural question about Dr. Nicolelis is what is he? Is he a robotics engineer? a neurologist? a programmer? a physician? The answer could be no other than ‘all of the above‘.

And even more impressive than all that, if that’s even possible, is the fact that this huge achievement of technology is presented at one of the most viewed sporting events on the planet. Brazilian organizers could have selected many things to kick-off this event: From Adriana Lima to Pelé; from a Samba line to aboriginal Amazonian people, but instead they chose to go with a scientific and technological breakthrough achieved by one of their own. I wonder if this is a way to tell the world they are interested in investing in science and technology as a way to pave the way of their economical and social development. Brazil is currently regarded as a fast growing nation economically although the social disparity seems to be still quite large. The message I’m getting, at least in principle, is that Brazil is a modern nation with high regard for scientific development on which they will rely their future.

Kudos to the Brazilian organizers who thought of placing this large scientific breakthrough in a sporting event, proving that this world should become boundless and the way to do it is through science.

Elements4D – Exploring Chemistry with Augmented Reality


A bit outside the scope of this blog (maybe), but just too cool to overlook. Augmented reality in chemistry education.

Science and Stuff - Sciencebase.com

This is a guest post from Samantha Morra of EdTechTeacher.org, an advertiser on FreeTech4Teachers.com. 

Augmented Reality (AR) blurs the line between the physical and digital world. Using cues or triggers, apps and websites can “augment” the physical experience with digital content such as audio, video and simulations. There are many benefits to using AR in education such as giving students opportunities to interact with items in ways that spark inquiry, experimentation, and creativity. There are a quite a few apps and sites working on AR and its application in education.

Elements4D, an AR app from Daqri, allows students explore chemical elements in a fun way while learning about real-life chemistry. To get started, download Elements4D and print the cubes.

There are 6 physical paper cubes printed with different symbols from the periodic table. It takes a while to cut out and put together the cubes, but it…

View original post 475 more words

Negotiations gone wrong and other recent scandals


About a month ago my wife and I got invited by our good friend Dr. Ruperto Fernandez (his PhD is in transport logistics and engineering) to his final presentation for a course in managerial skills he’d taken for over six months, and while I wasn’t all that thrilled about waking up at 8 AM on a Saturday, I went to cheer my good friend and show him my sleepy support. His presentation dealt with negotiations and the required skills to master them, and while he agreed that there is a huge amount of talent involved in being a good negotiator, he also pointed out that some basic knowledge of the procedure can go a long way in helping us with little to no talent in achieving the best possible outcome. Basically, a negotiation involves the agreement between a person with something which another person wants; meeting both parties expectations at the fullest extent possible is the ideal endpoint for an iterative give-and-take between them. Or so it goes.

Recently a scandal that involved the biology freelance blogger DNLee, who blogs for Scientific American with the column The Urban Scientist, took place: DNLee was asked by Biology-Online.org to write for them. Then the negotiation started; she had something the editors wanted: her texts. She agreed to do it and presented her fee (second part of the negotiation process: “I got what you want and here is what I ask in return for it“), instead of having an offer made (third part of the negotiation process: “ok, that is what you want but this is what I can give you“) the blogger got a nasty message, which I believe maybe was intended to elicit a response to better accommodate the editor’s demands but that was nothing more than a plain nasty insult: The editor asked if she was the urban scientist or the urban whore (end of negotiation; nobody got anything. Furthermore, feelings were hurt, reputations questioned and the door for future negotiations between both parties was shut completely). If the editor was unable to pay any fee at all then the editor should have tried to convince the blogger of participating for free; I would have offered her a bigger space than a regular blogger, or maybe even invited her to participate as an editor. I’m not sure they have some sort of business model but something could have been arranged. Had this negotiation not met at any point in the middle then a polite thank you could have left the door open for a future time. DNLee has a reputation that allows her to charge for her writings, had it been me, I’d probably had done it for free but because I need more exposure than her who is already famous. Internet support came promptly and hard as can be seen here and here, not that it wasn’t called for, of course!

But the issue, sadly, didn’t end there, DNLee wrote about this in her blog at SciAm, but the post was later on deleted by the editors. Dr. Mariette DiChristina tweeted that the post wasn’t related to science so it didn’t fit in the site. Pressure in blogs and other social networks prompted SciAm to place the article back on the site. Click here to go to the post.

Calling someone a whore is simply unacceptable.

During his presentation, my friend Dr. Ruperto Fernandez, talked about a negotiation he had with a potential employer. According to his account of the process, it ended quite swiftly when he was offered a much lower salary than the one he currently earns. He said the offer had some good points that could have made him accept even 5 to 10% less income respect to his current salary, but much less than that would not help him cover the bills and that was a total deal-breaker. But the talk didn’t end there, some other joint projects were laid for them to work on together and the door is still open for the future when they may be able to match my friend’s expectations as biology-online should have done with DNLee.

It has been a rough couple of weeks for the Scientific American community; first this and now the leaving of a great science writer, Bora Zivcovic whose misconduct has forced his exit out of the popular magazine. So now the aftermath for both issues remains to be seen. Sexism, though, could be found to be a common denominator in both cases: one was a victim of it, the other one is guilty of inflicting it through various instances of sexual harassment. Should this mean that biology-online, Bora Zivcovic and the affiliated-to-the-two-previous parties, the Scientific American Magazine, are to be deemed as unworthy? I hardly think so. None of us is close to sanctity and we all make mistakes, some of them willingly and other unwillingly but we are accountable for each and every one of them nonetheless; but at the same time we should also be able to separate both sides of each story and keep the best of each side while keeping a close eye (and even a loud mouth) about the wrong in each side.

I wish nothing but the best to every person involved in any of these recent events. Why is it so hard for people to just ‘play nice‘? I’ve heard many times this world would be a better place if we cared more for each other, but sometimes it seems that its actually the opposite; that this world would be be better if we didn’t care so much: if we didn’t care about the color of our skin; our gender; our nationality or ethnicity; our sexual orientation; our social status. This brings me back yet again to that presentation by Dr. Fernandez, where he was asked to describe the way he was perceived by others at his workplace and he said he didn’t quite enjoy social interactions so he is perceived as serious and aloof but was always willing to join a new project, so when reached out for one of these he’s all smiles and work. Shouldn’t we all back off a little bit from each other from time to time?

%d bloggers like this: