Category Archives: Spectroscopy

A New Graduate Student


With pleasure I announce that last week our very own Gustavo “Gus” Mondragón became the fifth undergraduate student from my lab to defend his BSc thesis and it has to be said that he did it admirably so.

Gus has been working with us for about a year now and during this time he not only worked on his thesis calculating excited states for bacteriochlorophyl pigments but also helped us finishing some series of calculations on calix[n]arene complexes of Arsenic (V) acids, which granted him the possibility to apear as a co-author of the manuscript recently published in JIPH. Back in that study he calculated the interaction energies between a family of calix macrocycles and arsenic acid derivatives in order to develop a suitable extracting agent.

For his BSc thesis, Gus reproduced the UV-Vis absorption spectra of bacteriochlorophyll-a pigments found in the Fenna-Matthews-Olson complex of photosynthetic purple bacteria using Time Dependent Density Functional Theory (TD-DFT) with various levels of theory, with PBEPBE yielding the best results among the tried set. These calculations were performed at the crystallographic conformation and at the optimized structure, also, in vacuo results were compared to those in implicit solvent (SMD, MeOH). He will now move towards his masters where he will further continue our research on photosynthesis.

Thank you, Gustavo, for your hard work and your sense of humor. Congratulations on this step and may many more successes come your way.

 

Maru Sandoval M.Sc. – Our First Graduate Thesis


It is with great pride that I’d like to announce that for the first time we have a Masters Student graduated from this Comp.Chem. lab: María Eugenia “Maru” Sandoval-Salinas has finished her graduate studies and just last Friday defended her thesis admirably earning not only the degree of Masters of Science in Chemistry but doing so with the highest honors given by the National Autonomous University of Mexico.

Maru’s thesis is for many reasons a landmark in this lab not only because it is the first graduate thesis published from our lab but also the first document on our work about the study of Photosynthesis, a long sought after endeavor now closer to publication. It must also be said that Maru came to this lab when she was an undergraduate student five years ago when I just recently joined UNAM as a researcher fresh out of a postdoc stay. After getting her B.Sc. degree and publishing an article in JCTC (DOI: 10.1021/ct4004178) she now is about to publish more papers that I’m sure will be as highly ranked as the previous one. Thus, Maru was a pioneer in our lab giving it a vote of confidence when we had little to nothing to show for; thanks to her hard work and confidence, along with that of the students who have followed her, we managed to succeed as a consolidated research group in the field of computational chemistry.

More specifically, her thesis centered around finding a mechanism for the excitonic transference between pigments (bacteriochlorophyl-a, BChl-a) in the Fenna-Matthews-Olson (FMO) complex, a protein trimer with seven BChl-a molecules in each monomer, located between the antenna complex and the reaction center in green sulfur bacteria. Among the possible mechanisms explored were Förster’s theory, a modification to Marcus’ theory and finally we explored the possibility of Singlet Fission occurring between adjacent molecules with the help of Dr. David Casanova from the Basque Country University where Maru took a short research stay last autumn. Since nature doesn’t conform to any specific mechanism -specially in a complex arrangement such as the FMO- then it could be possible that a combination of the above might also occur but lets just wait for the papers to be published to discuss it. Calculations were performed through the TD-DFT and the C-DFT formalisms using G09 and Q-Chem; comparing experimental data in CH3OH (SMD implicit calculations with the SVWN5 functional) were undertaken previously for selection of the level of theory.

Now, after two original theses written and successfully defended, an article published in JCTC and more in process, at least five posters, a couple of oral presentations and countless hours at her desk, Maru will go pursuit a PhD abroad where I’m sure she will exceed anyone’s expectations with her work, drive, dedication and scientific curiosity. Thank you, Maru, for all your hard work and trust when this lab needed it the most, we wish you the best for you earn it. You will surely be missed.

Simulation of Raman Spectroscopy and crystal cell effects – Selenium Carboxylate Eur. J. Inorg. Chem.


Computing spectroscopic features of molecules is always an interesting challenge, specially when intermolecular contacts are into play. Take vibrational spectroscopy for instance, all the non-covalent interactions present in a solid will have an important effect on the the calculated frequencies and their intensities. However calculating the spectroscopical properties of a solid quickly becomes a daunting task.

My colleague and friend Dr. Vojtech Jancik asked me to calculate the Raman frequencies for a new compound: Selenoyl bis-carboxylate, which according to him was very hard to obtain due to the very nature of selenium. So we performed various calculations on the isolated molecule to reproduce the measured Raman spectrum but we soon realized that a calculation on the crystal cell was needed if we wanted to get a more thorough picture of the experiment.

The level of theory used was PBEPBE/LANL2DZ. Optimization of the title structure pointed to a low coordination capacity by carboxylate groups as evidenced by the longer Se -O-C=O distances and reduced Wiberg bond indexes. A blue shift was observed for all bands and so we calculated the Raman frequencies at the crystal structure which gave us a better correspondence between spectra. Finally we computed the Raman spectra for the full unit cell comprised of four molecules with which an excellent agreement was obtained (a scaling factor of 0.8 was used).

Unfortunately we failed to further extend this calculation to a larger system with four unit cells and 32 molecules apparently due to insufficient memory; the calculation just stalled and stopped without error after consuming its time in the queue. I’ll try to take a look into it some day.

https://vine.co/v/eaQOH57nADO/embed/simple?audio=1https://platform.vine.co/static/scripts/embed.js

You can read the whole story in: Synthesis and Crystal Structure of the First Selenonyl Bis(carboxylate) SeO2(O2CCH3)2
Lukas Richtera · Vojtech Jancik · Joaquín Barroso‐Flores · Petr Nykel · Jiri Touzin · Jan Taraba

European Journal of Inorganic Chemistry 06/2015; 2015(18):2923–2927. DOI:10.1002/ejic.201500271
https://platform.vine.co/static/scripts/embed.js

Thanks for reading!

%d bloggers like this: