Blog Archives

Water splitting by proton to hydride umpolung—New paper in Chem.Sci.

The word ‘umpolung‘ is not used often enough in my opinion, and that’s a shame since this phenomenon refers to one of the most classic tropes or deus ex machina used in sci-fi movies—prominently in the Dr. Who lore*—and that is ‘reversing the polarity‘. Now, reversing the polarity only means that for any given dipole the positively charged part now acquires a negative charge, while the originally negatively charged part becomes positively charged, and thus the direction of the dipole moment is, well, reversed.

In chemistry, reversing the polarity of a bond is an even cooler matter because it means that atoms that typically behave as positively charged become negatively charged and react with other molecules accordingly. Such is the case of this new research conducted experimentally by Prof. Rong Shang at Hiroshima University and theoretically elucidated by Leonardo “Leo” Lugo, who currently works jointly with me and my good friend the always amazing José Oscar Carlos Jimenez-Halla at the University of Guanajuato, Mexico.

Production of molecular hydrogen from water splitting at room temperature is a remarkable feat that forms the basis of fuel cells in the search for cleaner sources of energy; this process commonly requires a metallic catalyst, and it has been achieved via Frustrated Lewis Pairs from Si(II), but so far the use of an intramolecular electron relay process has not been reported.

BPB – Figure 1

Prof. Rong Shang and her team synthesized an ortho-phenylene linked bisborane functionalized phosphine (Figure 1), and proved their stoichiometric reaction with water yielding H2 and phosphine oxide quantitatively at room temperature. During the reaction mechanism the umpolung occurs when a proton from the captured water molecule forms a hydride centered on the borane moiety of BPB. The reaction mechanism is shown in Figure 2.

According to the calculated mechanism, a water molecule coordinates to one of the borane groups via the oxygen atom, and the phosphorus atom later forms a hydrogen bond via their lone pair separating the water molecule into OH and H+, this latter migrates to the second borane and it is during this migration (marked TSH2 in Figure 2) where the umpolung process takes place; the natural charge of the hydrogen atom changes from positive to negative and stays so in the intermediate H3. This newly formed hydride reacts with the hydrogen atom on the OH group to form the reduction product H2, the final phosphine oxide shows a PO…B intramolecular forming a five membered ring which further stabilizes it.

This results are now available in Chemical Science, 2021, 12, 15603 DOI:10.1039/d1sc05135k. As always, I deeply thank Prof. Óscar Jiménez-Halla for inviting me to participate on this venture.

* Below there’s a cool compilation of the Reverse the Polarity trope found in Dr. Who:

%d bloggers like this: