Blog Archives

Quick note on WFN(X) files and MP2 calculations #G09 #CompChem


A few weeks back we wrote about using WFN(X) files with MultiWFN in order to find σ-holes in halogen atoms by calculating the maximum potential on a given surface. We later found out that using a chk file to generate a wfn(x) file using the guess=(read,only) keyword didn’t retrieve the MP2 wavefunction but rather the HF wavefunction! Luckily we realized this problem very quickly and were able to fix it. We tried to generate the wfn(x) file with the following keywords at the route section

#p guess=(read,only) density=current

but we kept retrieving the HF values, which we noticed by running the corresponding HF calculation and noticing that every value extracted from the WFN file was exactly the same.

So, if you want a WFN(X) file for post processing an MP2 (or any other post-HartreFock calculation for that matter) ask for it from the beginning of your calculation in the same job. I still don’t know how to work around this or but will be happy to report it whenever I do.

PS. A sincere apology to all subscribers for getting a notification to this post when it wasn’t still finished.

Advertisements

If a .fchk file wont open in GaussView5.0


I’ve found the following error regarding the opening of .fchk files in GaussView5.0.

CConnectionGFCHK::Parse_GFCHK()
Missing or bad data: Alpha Orbital Energies
Line Number 1234

The error is prevented to a first approximation (i.e. it at least will allow GV to open and visualize the file but other issues may arise) by opening the file and modifying the number of basis functions to equal the number of independent functions (which is lower)

FILE HEADER 
FOpt RM062X 6-311++G(d,p) 
Number of atoms I 75
Info1-9 I N= 9
 163 163 0 0 0 110
 2 18 -502
Charge I 0
Multiplicity I 1
Number of electrons I 314
Number of alpha electrons I 157
Number of beta electrons I 157
Number of basis functions I 1199
Number of independent functions I 1199
Number of point charges in /Mol/ I 0
Number of translation vectors I 0
Atomic numbers I N= 75
... ...
... ...

Once both numbers match you can open the file normally and work with it. My guess is this will continue to happen with highly polarized basis sets but I need to run some tests.

%d bloggers like this: