Blog Archives
Visit to ‘Universidad de la Cañada’ in Oaxaca, Mexico
A couple of weeks ago I was invited to give a talk to a small university in southern Mexico called ‘Universidad de la Cañada‘ in the state of Oaxaca, one of the most underprivileged states in our nation. This institution is a rather small one but the work they are doing over there with as little resources as they have is truly remarkable . UNCA offers degrees in pharmacy, pharmacology, food sciences, clinical chemistry and other topics that aim to supply the needed human resources for the various industries that are settled in the region. There is a true feeling of togetherness at UNCA since they have little pieces of equipment yet they are all fully shared among researchers regardless of who received the finance to acquire them. Last year, two of their students came for a two months stay, after which, Alberto and Eduardo got their names on a publication of our research group. It was nice to see them again and even nicer to learn they are about to finish their studies and that they will come back again to our lab in late July.
Every year at UNCA there is a Pharmacology Day on which the students show the results to their research projects during a poster session and listen to lectures by guest speakers from various universities around Mexico. Most of their projects were aimed to the isolation of natural products from local resources and their usage in several kinds of consumer products. UNCA is in a very small town, village I might say, surrounded by mountains and vegetation; the view was spectacular as you may see from the pictures below. Thank you very much to my good friend Dr. Carmen Hernández-Galindo for inviting me to participate and share our work with their students, I hope we may go back again and keep a fruitful exchange between our groups.
- UNCA
- Me, Eduardo, Alberto
- Some arachnids
- Dr. Carmen Hernández and I
- Grasshoppers. A delicacy in Oaxaca
During this talk, I took the opportunity to talk about the aforementioned paper in the context of molecular recognition and their in silico design but I think I should have talked more about the computational strategies that are most employed in the pharmaceutical industry. Never mind. I hope I get the opportunity to right this wrong. Still it was nice to give Alberto and Eduardo the opportunity to brag a little about being published authors.
Kudos to Rola Aburto, Dr. Margarita Bernabé, Dr. Rocío Rosas, and all the academic staff at UNCA for their invaluable dedication to teaching science against all odds, I can testify, through the hard work of their students, hat their effort is paying off.
New paper in Computational and Theoretical Chemistry
I always get very happy to have a new paper out there! I find it exciting but most of all liberating since it makes you feel like your work is going somewhere but most of all that it is making its way ‘out there’; there is a strong feeling of validation, I guess.
Two very different families of calix[n]arenes (Fig 1) were tested as drug carriers for a very small molecule with a huge potential as a chemotherapeutic agent against Leukemia, namely, 3-phenyl-1H-[1]benzofuro[3,2-c]pyrazole a.k.a. GTP which has proven to be an effective in vitro Tyrosine Kinase III inhibitor. Having such a low molecular weight it is expected to have a very high excretion rate therefore the use of a carrier could increase its retention time and hence its activity. This time we considered n = 4, 5, 6 and 8 for the size of the cavities and R = -SO3H and -OEt as functional groups on the upper rim as to evaluate only a polar coordinating group and a non-polar non-coordinating one since GTP offers two H-bond acceptor sites and one H-bond donor one along the π electron density that could form π – π stacking interactions between the aromatic groups on GTP and the walls of the calixarene.
Once again calculations were carried out at the B97D/6-31G(d,p) level of theory along with molecular dynamics simulations for over 100 ns of production runs. NBO Deletion interaction energies were computed in order to discern which hosts formed the most stable complexes.
You may find a link to the ScienceDirect website for downloading the paper from this link. Last, but certainly not least, I’d like to thank all coauthors for their contributions and patience in getting this study published: Dr. Rodrigo Galindo-Murillo; Alberto Olmedo-Romero; Eduardo Cruz-Flores; Dr. Petronela M. Petrar and Prof. Dr. Kunsági-Máté Sándor. Thanks a lot for everything!