Blog Archives

Fixing the error: Bad data into FinFrg


I found this error in the calculation of two interacting fragments, both with unpaired electrons. So, two radicals interact at a certain distance and the full system is deemed as a singlet, therefore the unpaired electron on each fragment have opposite spins. The problem came when trying to calculate the Basis Set Superposition Error (BSSE) because in the Counterpoise method you need to assign a charge and multiplicity to each fragment, however it’s not obvious how to assign opposite spins.

The core of the problem is related to the guess construction; normally a Counterpoise calculation would look like the following example:

#p B3LYP/6-31G(d,p) counterpoise=2

-2,1 -1,2 -1,2
C(Fragment=1)        0.00   0.00   0.00
O(Fragment=2)        1.00   1.00   1.00
...

In which the first pair of charge-multiplicity numbers correspond to the whole molecule and the following to those of each fragment in increasing order of N (in this case, N = 2). So for this hypothetical example we have two anions (but could easily be two cations) each with an unpaired electron, yielding a complex of charge = -2 and a singlet multiplicity which implies those two unpaired electrons have opposite spin. But if the guess (the initial trial wavefunction from which the SCF will begin) has a problem understanding this then the title error shows up:

Bad data into FinFrg 
Error termination via Lnk1e ...

The solution to this problem is as simple as it may be obscure: Create a convenient guess wavefunction by placing a negative sign to the multiplicity of one of the fragments in the following example. You may then use the guess as the starting point of other calculations since it will be stored in the checkpoint file. By using this negative sign we’re not requesting a negative multiplicity, but a given multiplicity of opposite spin to the other fragment.

#p B3LYP/6-31G(d,p) guess=(only,fragment=2)

-2,1 -1,2 -1,-2 
C(Fragment=1)        0.00   0.00   0.00 
O(Fragment=2)        1.00   1.00   1.00 
...

This way, the second fragment will have the opposite spin (but the same multiplicity) as the first fragment. The only keyword tells gaussian to only calculate the guess wave function and then exit the program. You may then use that guess as the starting point for other calculations such as my failed Counterpoise one.

The HOMO-LUMO Gap in Open Shell Calculations. Meaningful or meaningless?


The HOMO – LUMO orbitals are central to the Frontier Molecular Orbital (FMO) Theory devised by Kenichi Fukui back in the fifties. The central tenet of the FMO theory resides on the idea that most of chemical reactivity is dominated by the interaction between these orbitals in an electron donor-acceptor pair, in which the most readily available electrons of the former arise from the HOMO and will land at the LUMO in the latter. The energy difference between the HOMO and LUMO of any chemical species, known as the HOMO-LUMO gap, is a very useful quantity for describing and understanding the photochemistry and photophysics of organic molecules since most of the electronic transitions in the UV-Vis region are dominated by the electron transfer between these two frontier orbitals.

But when we talk about Frontier Orbitals we’re usually referring to their doubly occupied version; in the case of open shell calculations the electron density with α spin is separate from the one with β spin, therefore giving rise to two separate sets of singly occupied orbitals and those in turn have a α-HOMO/LUMO and β-HOMO/LUMO, although SOMO (Singly Occupied Molecular Orbital) is the preferred nomenclature. Most people will then dismiss the HOMO/LUMO question for open shell systems as meaningless because ultimately we are dealing with two different sets of molecular orbitals. Usually the approach is to work backwards when investigating the optical transitions of a, say, organic radical, e.g. by calculating the transitions with such methods like TD-DFT (Time Dependent DFT) and look to the main orbital components of each within the set of α and β densities.

To the people who have asked me this question I strongly suggest to first try Restricted Open calculations, RODFT, which pair all electrons and treat them with identical orbitals and treat the unpaired ones independently. As a consequence, RO calculations and Unrestricted calculations vary due to variational freedom. RO calculations could yield wavefunctions with small to large values of spin contamination, so beware. Or just go straight to TDDFT calculations with hybrid orbitals which include a somewhat large percentage of HF exchange and polarized basis sets, but to always compare results to experimental values, if available, since DFT based calculations are Kohn-Sham orbitals which are defined for non-interacting electrons so the energy can be biased. Performing CI or CASSCF calculations is almost always prohibitive for systems of chemical interest but of course they would be the way to go.

Dealing with Spin Contamination


Most organic chemistry deals with closed shell calculations, but every once in a while you want to calculate carbenes, free radicals or radical transition states coming from a homolytic bond break, which means your structure is now open shell.

Closed shell systems are characterized by having doubly occupied molecular orbitals, that is to say the calculation is ‘restricted’: Two electrons with opposite spin occupy the same orbital. In open shell systems, unrestricted calculations have a complete set of orbitals for the electrons with alpha spin and another set for those with beta spin. Spin contamination arises from the fact that wavefunctions obtained from unrestricted calculations are no longer eigenfunctions of the total spin operator <S^2>. In other words, one obtains an artificial mixture of spin states; up until now we’re dealing only with single reference methods. With each step of the SCF procedure the value of <S^2> is calculated and compared to s(s+1) where s is half the number of unpaired electrons (0.75 for a radical and 2.0 for triplets, and so on); if a large deviation between these two numbers is found, the then calculation stops.

Gaussian includes an annihilation step during SCF to reduce the amount of spin contamination but it’s not 100% reliable. Spin contaminated wavefunctions aren’t reliable and lead to errors in geometries, energies and population analyses.

One solution to overcome spin contamination is using Restricted Open Shell calculations (ROHF, ROMP2, etc.) for which singly occupied orbitals is used for the unpaired electrons and doubly occupied ones for the rest. These calculations are far more expensive than the unrestricted ones and energies for the unpaired electrons (the interesting ones) are unreliable, specially spin polarization is lost since dynamical correlation is hardly accounted for. The IOP(5/14=2) in Gaussian uses the annihilated wavefunction for the population analysis if acceptable but since Mulliken’s method is not reliable either I don’t advice it anyway. 

The case of DFT is different since rho.alpha and rho.beta can be separated (similarly to the case of unrestricted ab initio calculations), but the fact that both densities are built of Kohn-Sham orbitals and not true canonical orbitals, compensates the contamination somehow. That is not to say that it never shows up in DFT calculations but it is usually less severe, of course for the case of hybrid functional the more HF exchange is included the more important spin contamination may become. 

So, in short, for spin contaminated wavefunctions you want to change from restricted to unrestricted and if that doesn’t work then move to Restricted Open Shell; if using DFT you can use the same scheme and also try changing from hybrid to pure orbitals at the cost of CPU time. There is a last option which is using spin projection methods but I’ll discuss that in a following post. 

%d bloggers like this: