Category Archives: AMBER

A New Gradúate Student. Raúl Márquez


We’re always happy at the lab when a student defends their dissertation thesis and now it was the turn of Raúl Márquez-Avilés to do so with flying colors.

The title of his dissertation is “Molecular Dynamics Simulations of 5 potential entry inhibitors for HIV-1“. He performed 500 ns long molecular dynamics simulations of the CD4 – gp 120 proteins interacting with one or several molecules of various lead compounds with inhibitory properties. The leads were obtained previously in our group (by Durbis Castillo, now at McGill) from a massive docking library of ca. 16 million compounds, all having a central piperazine core (Fig1)

Figure 1. Lead compounds: Piperazine cores with heterocyclic substitutions.

The protein gp120 is a surface glyco-protein located at the surface of the HIV virus which couples to the CD4 protein on lymphocytes-T, being this the first step in the infection process of a healthy cell; generating inhibitors of this coupling could help stop the infection from spreading systemically. Four systems were devised: (SB) The reference state for which only gp-120 and CD4 were considered, (S2) A single ligand molecule was placed in the Phe43 cavity of gp120 to assess their inhibitory capacity, (S3) the ligand was placed right outside the Phe43 cavity to assess their entry capacity, and (S4) five ligand molecules were placed outside the Phe43 cavity of gp120 to force their entry (Fig2). Their binding energies were calculated using MM-PBSA and although all five ligands show statistically similar results as inhibitors all five exhibit a stronger binding energy than the reference proving their efficacy in preventing the coupling of the virus to the healthy cell. As a bonus, his research on system S4 shed light on the existence of an allosteric site on gp120 that will warrant further research in our group.

Figure 2. Systems for which 500 ns MD simulations were performed.

This work is still pending publication.

Raúl Márquez has always proven to be a hard working person who is also very self-sufficient student, a very cheerful labmate, and, as I just learned yesterday, an avid chess player. I’m sure he has a bright future in whichever endeavor he chooses now. Congratulations Raúl Márquez-Avilés!

Non-canonical Base Pairs show Watson-Crick pairing in MD simulations


Elucidating the pairing of non-hydrogen bonded unnatural base pairs (UBPs) is still a controversial subject due to the lack of specificity in their mutual interactions. Experimentally, NMR is the method of choice but the DNA strand must be affixed on template of sorts such as a polymerase protein. Those discrepancies are well documented in a recent review which cites our previous computational work, both DFT and MD, on UBPs.

Since that last paper of ours on synthetic DNA, my good friend Dr. Rodrigo Galindo from Utah U. and I have had serious doubts on the real pairing fashion exhibited by Romesberg’s famous hydrophobic nucleotides d5SICS – dNaM. While the authors claim a stacked pairing (within the context of the strand in the KlenTaq polymerase enzime), our simulations showed a Watson-Crick-like pairing was favored in the native form. To further shed light on the matter we performed converged micro-seconds long simulations, varying the force field (two recent AMBER fields were explored: Bsc1 and OL15), the water model (TIP3P and OPC), and the ionic compensation scheme (Na+/Cl or Mg2+/Cl).

In the image below it can be observed how the pairing is consistently WC (dC1′-C1′ ~10.4 A) in the most populated clusters regardless of the force field.

Also, a flipping experiment was performed where both nucleotides were placed 180.0° outwards and the system was left to converge inwards to explore a ‘de novo’ pairing guided solely by their mutual interactions and the template formed by the rest of the strand. Distance population for C1′ – C1′ were 10.4 A for Bsc1 (regardless of ionic compensation) and 9.8 A for OL15 (10.4 A where Mg2+ was used as charge compensation).

This study is now published in the Journal of Biomolecular Structure & Dynamics doi.org/10.1080/07391102.2019.1671898.

Despite the successful rate of replication by a living organism -which is a fantastic feat!- of these two nucleotides, there is little chance they can be used for real coding applications (biological or otherwise) due to the lack of structural control of the double helix. The work of Romesberg is impressive, make no mistake about it, but my money isn’t on hydrophobic unnatural nucleotides for information applications 🙂

All credit and glory is due to the amazing Dr. Rodrigo Galindo-Murillo from the University of Utah were he works as a developer for the AMBER code among many other things. Go check his impressive record!

%d bloggers like this: