# Blog Archives

## Geometry Optimizations for Excited States

Electronic excitations are calculated vertically according to the Frank—Condon principle, this means that the geometry does not change upon the excitation and we merely calculate the energy required to reach the next electronic state. But for some instances, say calculating not only the absorption spectra but also the emission, it is important to know what the geometry minimum of this final state looks like, or if it even exists at all (Figure 1). Optimizing the geometry of a given excited state requires the prior calculation of the vertical excitations whether via a multireference method, quantum Monte Carlo, or the Time Dependent Density Functional Theory, TD-DFT, which due to its lower computational cost is the most widespread method.

Most single-reference treatments, ab initio or density based, yield good agreement with experiments for lower states, but not so much for the higher excitations or process that involve the excitation of two electrons. Of course, an appropriate selection of the method ensures the accuracy of the obtained results, and the more states are considered, the better their description although it becomes more computationally demanding in turn.

In Gaussian 09 and 16, the argument to the ROOT keyword selects a given excited state to be optimized. In the following example, five excited states are calculated and the optimization is requested upon the second excited state. If no ROOT is specified, then the optimization would be carried out by default on the first excited state (Where L.O.T. stands for Level of Theory).

`#p opt TD=(nstates=5,root=2) L.O.T.`

Gaussian16 includes now the calculation of analytic second derivatives which allows for the calculation of vibrational frequencies for IR and Raman spectra, as well as transition state optimization and IRC calculations in excited states opening thus an entire avenue for the computation of photochemistry.

If you already computed the excited states and just want to optimize one of them from a previous calculation, you can read the previous results with the following input :

`#p opt TD=(Read,Root=N) L.O.T. Density=Current Guess=Read Geom=AllCheck`

Common problems. The following error message is commonly observed in excited state calculations whether in TD-DFT, CIS or other methods:

`No map to state XX, you need to solve for more vectors in order to follow this state.`

This message usually means you need to increase the number of excited states to be calculated for a proper description of the one you’re interested in. Increase the number N for nstates=N in the route section at higher computational cost. A rule of thumb is to request at least 2 more states than the state of interest. This message can also reflect the fact that during the optimization the energy ordering changes between states, and can also mean that the ground state wave function is unstable, i.e., the energy of the excited state becomes lower than that of the ground state, in this case a single determinant approach is unviable and CAS should be used if the size of the molecule allows it. Excited state optimizations are tricky this way, in some cases the optimization may cross from one PES to another making it hard to know if the resulting geometry corresponds to the state of interest or another. Gaussian recommends changing the step size of the optimization from the default 0.3 Bohr radius to 0.1, but obviously this will make the calculation take longer.

`Opt=(MaxStep=10)`

If the minimum on the excited state potential energy surface (PES) doesn’t exist, then the excited state is not bound; take for example the first excited state of the H2 molecule which doesn’t show a minimum, and therefore the optimized geometry would correspond to both H atoms moving away from each other indefinitely (Figure 2). Nevertheless, a failed optimization doesn’t necessarily means the minimum does not exist and further analysis is required, for instance, checking the gradient is converging to zero while the forces do not.

## Partial Optimizations with Gaussian09

Sometimes you just need to optimize some fragment or moiety of your molecule for a number of reasons -whether because of its size, your current interest, or to skew the progress of a previous optimization- or maybe you want just some kind of atoms to have their positions optimized. I usually optimize hydrogen atoms when working with crystallographic files but that for some reason I want to preserve the rest of the molecule as refined, in order to keep it under a crystalline field of sorts.
Asking Gaussian to optimize some of the atoms in your molecule requires you to make a list albeit the logic behind it is not quite straightforward to me. This list is invoked by the ReadOptimize keyword in the route section and it includes all atoms by default, you can then further tell G09 which atoms are to be included or excluded from the optimization.
So, for example you want to optimize all atoms EXCEPT hydrogens, then your input should bear the ReadOptimize keyword in the route section and then, at the end of the molecule specification, the following line:

`atoms notatoms=H`

If you wish to selectively add some atoms to the list while excluding others, here’s an example:

`atoms=C H S notatoms=5-8`

This list adds, and therefore optimizes, all carbon, hydrogen and sulfur atoms, except atoms 5, 6, 7 and 8, should they be any of the previous elements in the C H S list.
The way I selectively optimize hydrogen atoms is by erasing all atoms from the list -using the noatoms instruction- and then selecting which are to be included in the list -with atoms=H-, but I haven’t tried it with only selecting hydrogen atoms from the start, as in atoms=H

`noatoms atoms=H`

I probably get very confused because I learned to do this with the now obsolete ReadFreeze keyword; now it sometimes may seem to me like I’m using double negatives or something – please do not optimize all atoms except if they are hydrogen atoms. You can include numbers, ranks or symbols in this list as a final line of your input file.

Common errors (by common I mean I’ve got them):

Lets look at the end of an input I just was working with:

>  AtmSel:  Line=”P  0″
>  Maximum list size exceeded in AddBin.
>  Error termination via Lnk1e in…

AtmSel is the routine which reads the atoms list and I was using a pseudopotential on phosphorous atoms, I placed the atoms list at the end of the file but it should be placed right after the coordinates and the connectivity matrix, should there be one, and thus before any external basis set or pseudopotential or any other specification to be read by Gaussian.

As a sort of test you can use the instruction:

```%kjob l103
%chk=myfile.chk
...```

at the Link0 section (where your checkpoint is defined). This will kill the job after the link 103 is finished, thus you will only get a list of what parameters were frozen and which were active. Then, if things look ok, you can run the job without the %kjob l103 instruction and get it done.

As usual I hope this helps. Thanks for reading except to those who didn’t read it except for the parts they did read.