Blog Archives

Another Great Year at the Lab! 2017

2017 was a complicated year for various reasons here in Mexico (and some personal health issues) but nonetheless I’m very proud of the performance of everyone at the lab whose hard work and great skills keep pushing our research forward.

Four new members joined the team and have presented their work at the national meeting for CompChem for the first time. Also, for the first time, one of my students, Gustavo Mondragón, gave a talk at this meeting with great success about his research on the Fenna Matthews Olson complex of photosynthetic bacteria.

The opportunity to attend WATOC at Munich presented me the great chance to meet wonderful people from around the world and was even kindly and undeservingly invited to write the prologue for an introductory DFT book by Prof. Pedro Cerón from Spain. I hope to Jeep up with the collaborations abroad such as the one with the Mirkin group at Nortgwestern and the one with my dear friend Kunsagi-Mate Sándor at Pecsi Tudomanyegyetem (Hungary), among many others; I’m thankful for their trust in our capabilities.

Two members got their BSc degrees, Marco an Durbis, the latter also single handedly paved the way for us to develop a new research line on the in silico drug developing front; his relentless work has also been praised by the QSAR team at the Institute of Chemistry with which he has collaborated by performing toxicity calculations for the agrochemical industry as well as by designing educational courses aimed to the dissemination of our work and QSAR in general among regulatory offices and potential clients. We’re sad to see him go next fall but at the same time we’re glad to know his scientific skills will further develop.

I cannot thank the team enough: Alejandra Barrera, Gustavo Mondragón, Durbis Castillo, Fernando Uribe, Juan Guzman, Alberto Olmedo, Eduardo Cruz, Ricardo Loaiza and Marco Garcia; may 2018 be a great year for all of you.

And to all the readers thank you for your kind words, I’m glad this little space which is about to become nine years old is regarded as useful; to all of you I wish a great 2018!



WATOC 2017

Last week the WATOC congress in Munich was a lot of fun. Our poster on photosynthesis had a great turnout and got a lot of positive feedback as well as many thought provoking questions. One of the highlights of my time there was seeing my former students and knowing they’re all leading successful and happy grad-student lives in Europe, I’m so very proud of them. It was great to connect with old friends and making new ones; a big thank you to all the readers of this little blog who took the time to come and say hi, I’m very glad the blog has been helpful to you.

Better recounts of WATOC 2017 can be found in the great Rzepa’s blog here and here.

Below there is an image of our poster (some typos persist).


See you all in 2020!

Photosynthesis and Singlet Fission – #WATOC2017 PO1-296

If you work in the field of photovoltaics or polyacene photochemistry, then you are probably aware of the Singlet Fission (SF) phenomenon. SF can be broadly described as the process where an excited singlet state decays to a couple of degenerate coupled triplet states (via a multiexcitonic state) with roughly half the energy of the original singlet state, which in principle could be centered in two neighboring molecules; this generates two holes with a single photon, i.e. twice the current albeit at half the voltage (Fig 1).


Jablonski’s Diagram for SF

It could also be viewed as the inverse process to triplet-triplet annihilation. An important requirement for SF is that the two triplets to which the singlet decays must be coupled in a 1(TT) state, otherwise the process is spin-forbidden. Unfortunately (from a computational perspective) this also means that the 3(TT) and 5(TT) states are present and should be taken into account, and when it comes to chlorophyll derivatives the task quickly scales.

SF has been observed in polyacenes but so far the only photosynthetic pigments that have proven to exhibit SF are some carotene derivatives; so what about chlorophyll derivatives? For a -very- long time now, we have explored the possibility of finding a naturally-occurring, chlorophyll-based, photosynthetic system in which SF could be possible.

But first things first; The methodology: It was soon enough clear, from María Eugenia Sandoval’s MSc thesis, that TD-DFT wasn’t going to be enough to capture the whole description of the coupled states which give rise to SF. It was then that we started our collaboration with SF expert, Prof. David Casanova from the Basque Country University at Donostia, who suggested the use of Restricted Active Space – Spin Flip in order to account properly for the spin change during decay of the singlet excited state. A set of optimized bacteriochlorophyll-a molecules (BChl-a) were oriented ad-hoc so their Qy transition dipole moments were either parallel or perpendicular; the rate to which SF could be in principle present yielded that both molecules should be in a parallel Qy dipole moments configuration. When translated to a naturally-occurring system we sought in two systems: The Fenna-Matthews-Olson complex (FMO) containing 7 BChl-a molecules and a chlorosome from a mutant photosynthetic bacteria made up of 600 Bchl-d molecules (Fig 2). The FMO complex is a trimeric pigment-protein complex which lies between the antennae complex and the reaction center in green sulfur dependent photosynthetic bacteria such as P. aestuarii or C. tepidium, serving thus as a molecular wire in which is known that the excitonic transfer occurs with quantum coherence, i.e. virtually no energy loss which led us to believe SF could be an operating mechanism. So far it seems it is not present. However, for a crystallographic BChl-d dimer present in the chlorosome it could actually occur even when in competition with fluorescence.


FMO Complex. Trimer (left), monomer (center), pigments (right)


BChQRU chlorosome. 600 Bchl-d molecules

I will keep on blogging more -numerical and computational- details about these results and hopefully about its publication but for now I will wrap this post by giving credit where credit is due: This whole project has been tackled by our former lab member María Eugenia “Maru” Sandoval and Gustavo Mondragón. Finally, after much struggle, we are presenting our results at WATOC 2017 next week on Monday 28th at poster session 01 (PO1-296), so please stop by to say hi and comment on our work so we can improve it and bring it home!

%d bloggers like this: