A new publication is now available in which we calculated the binding properties of a fluorescent water-soluble chemosensor for halides which is specially sensitive for chloride. Once again, we were working in collaboration with an experimental group who is currently involved in developing all kinds of sustainable chemosensors.

The electronic structure of the chromophore was calculated at the M06-2X/6-311++G(d,p) level of theory under the SMD solvation model (water) at various pH levels which was achieved simply by changing the protonation and charges upon the ligand. Wiberg bond indexes from the Natural Population Analysis showed strong interactions between the chloride ion and the chromophore. Also, Fukui indexes were calculated in order to find the most probable binding sites. A very interesting feature of this compound is its ability to form a cavity without being a macrocycle! I deem it a cavity because of the intramolecular interactions which prevent the entrance of solvent molecules but that can be reversibly disrupted for the inclusion of an anion. In the figure below you can observe the remarkable quenching effect chloride has on the anion.

Sensors

A quick look to the Frontier Molecular Orbitals (FMO’s) show that the chloride anion acts as an electron donor to the sensor.

Frontier Molecular Orbitals
Frontier Molecular Orbitals

If you are interested in more details please check: Bazany-Rodríguez, I. J., Martínez-Otero, D., Barroso-Flores, J., Yatsimirsky, A. K., & Dorazco-González, A. (2015). Sensitive water-soluble fluorescent chemosensor for chloride based on a bisquinolinium pyridine-dicarboxamide compound. Sensors and Actuators B: Chemical, 221, 1348–1355. http://doi.org/10.1016/j.snb.2015.07.031

Thanks to Dr. Alejandro Dorazco from CCIQS for asking me to join him in this project which currently includes some other join ventures in the realm of molecular recognition.

Advertisement