# Daily Archives: May 26, 2016

## The ‘art’ of finding Transition States Part 1

Guillermo Caballero, a graduate student from this lab, has written this two-part post on the nuances to be considered when searching for transition states in the theoretical assessment of reaction mechanisms. He’s been quite successful in getting beautiful energy profiles for organic reaction mechanisms, some of which have even explained why some reactions do not occur! A paper in Tetrahedron has just been accepted but we’ll talk about it in another post. I wanted Guillermo to share his insight into this hard practice of computational chemistry so he wrote the following post. Enjoy!

Yes, finding a transition state (TS) can be one of the most challenging tasks in computational chemistry, it requires both a good choice of keywords in your route section and all of your chemical intuition as well. Herein I give you some good tricks when you have to find a transition state using Gaussian 09 Rev. D1

**METHOD 1. **The first option you should try is to use the **opt=qst2** keyword. With this method you provide the structures of your reagents and your products, then the program uses the quadratic synchronous transit algorithm to find a possible transition state structure and then optimize it to a first order saddle point. Here is an example of the input file.

link 0 --blank line-- #p b3lyp/6-31G(d,p)opt=qst2geom=connectivity freq=noraman --blank line--Charge MultiplicityCoordinates of reagents --blank line--Charge MultiplicityCoordinates of products --blank line---

It is mandatory that the numbering must be the same in the reagents and the products otherwise the calculation will crash. To verify that the label for a given atom is the same in reagents and products you can go to * Edit*, then

*This opens a new window were you can manually modify the numbering scheme. I suggest you to work in a split window in gaussview so you can see at the same time your reagents and products.*

**Connection.**The keyword freq=noraman is used to calculate the frequencies for your optimized structure, it is important because for a TS you must only observe one imaginary frequency, if not, then that is not a TS and you have to use another method. It also occurs that despite you find a first order saddle point, the imaginary frequency does not correspond to the bond forming or bond breaking in your TS, thus, you should use another method. I will give you advice later in the text for when this happens. When you use the noraman in this keyword you are not calculating the Raman frequencies, which for the purpose of a TS is unnecessary and saves computing time. Frequency analysis MUST be performed AT THE VERY SAME LEVEL OF THEORY at which the optimization is performed.

The main advantage for using the qst2 option is that if your calculation is going to crash, it generally crashes at the beginning, in the moment of guessing your transition state structure. Once the program have a guess, it starts the optimization. I suggest you to ask the algorithm to calculate the force constants once, this generally improves on the convergence, it will take slightly more time depending on the size of your structure but it pays off. The keyword in the route section is **opt=(qst2,calcfc)**. Indeed, I hardly encourage you to use the **calcfc** keyword in any optimization you want to run.

**METHOD 2. **If method 1 does not work, my next advice is to use the **opt=ts** keyword. For this method, the coordinates in your input file are those for the TS structure. Here is an example of the input file.

link 0 --blank line-- #p b3lyp/6-31G(d,p)opt=tsgeom=connectivity freq=noraman --blank line--Charge MultiplicityCoordinates of TS --blank line--

The question that arises here is how should I get the coordinates for my TS? Well, honestly this is not a trivial task, here is where you use all the chemistry you know. For example, you can start with the coordinates of your reagents and manually get them closer. If you are forming a bond whose length is to be 1.5Å, then I suggest you to have that length in 1.6Å in your TS. Sometimes this becomes trial and error but the most accurate your TS structure is, based on your chemical knowledge, the easiest to find your TS will be. As another example, if you want to find a TS for a [1,5]-sigmatropic reaction a good TS structure will be putting the hydrogen atom that migrates in the middle point through the way. I have to insist, this method hardly depends on your imagination to elucidate a TS and on your chemistry background.

Most of the time when you use the opt=ts keyword the calculations crashes because of an error in the number of eigenvalues, you can avoid it adding **noeigen** to the route section; here is an example of the input file, I encourage you to use this method.

link 0 --blank line-- #p b3lyp/6-31G(d,p)opt=(ts,noeigen,calcfc)geom=connectivity freq=noraman --blank line--Charge MultiplicityCoordinates of TS --blank line--

If you have problems in the optimization steps I suggest you to ask the algorithm to calculate the force constants in every step of the optimization **opt=(ts,noeigen,calcall)** this is quite a harsh method because will consume long computing time but works well for small molecules and for complicated TSs to find.

Another ‘tricky’ way to get your coordinates for your TS is to run the qst2 calculation, then if it fails, take the second- or the third-step coordinates and used them as a ‘pre-optimized’ set of coordinates for this method.

By the way, here is another useful trick. If you are evaluating a group of TSs, let’s say, if you are varying a functional group among the group, focus on finding the TS for the simplest case, then use this optimized TS as a template where you add the moieties and use this this method. This works pretty well.

For this post we’ll leave it up to here and post the rest of Guillermo’s tricks and advice on finding TS structures next week when we’ll also discuss the use of IRC calculations and some considerations on energy corrections when plotting the full energy profile. In the mean time please take the time to rate, like and share this and other posts.

Thanks for reading!