Au(I) Chemistry No.3 – New paper in Dalton Transactions

Stabilizing Gold in low oxidation states is a longstanding challenge of organometallic chemistry. To do so, a fine tuning of the electron density provided to an Au atom by a ligand via the formation of a σ bond. The group of Professor Rong Shang at the University of Nagasaki has accomplished the stabilization of an aurate complex through the use of a boron, nitrogen-containing heterocyclic carbene; DFT calculations at the wB97XD/(LANL2TZ(f),6-311G(d)) level of theory revealed that this ligand exhibits a high π-withdrawing character of the neutral 4π B,N-heterocyclic carbene (BNC) moiety and a 6π weakly aromatic character with π-donating properties, implying that this is the first cyclic carbene ligand that is able to be tuned between π-withdrawing (Fischer-type)- and π-donating (Schrock-type) kinds.

A π-withdrawing character on part of the ligand is important to allow the electron-rich gold center back donate some of its excess electron density, this way preventing its oxidation. A modification of Bertrand’s cyclic (alkyl)(amino)carbene (CAAC) has allowed Shang and co-workers to perform the two electrons Au(I) reduction to form the aurate shown in figure 1 (CCDC 2109027). This work also reports on the modular synthesis of the BNC-1 ligand and the mechanism was calculated once again by Leonardo “Leo” Lugo.

Figure 1. Compound 4a (H atoms omitted for clarity)

The ability of the BNC-1 ligand to accept gold’s back donation is reflected on the HOMO/LUMO gap as shown in Figure 2; while BNC-1 has a gap of 7.14 eV, the classic NHC carbene has a gap of 11.28 eV, furthermore, in the case of NHC the accepting orbital is not LUMO but LUMO+1. Additionally, the NBO delocalization energies show that the back donation from Au 5d orbital to the C-N antibonding π* orbital is about half that expected for a Fischer type carbene, suggesting an intermediate character between π accepting and π donating carbene. On the other hand, the largest interaction corresponds to the carbanion density donated to Au vacant p orbital (ca. 45 kcal/mol). All these observations reveal the successful tuning of the electron density on BNC-1.

Figure 2. Frontier Molecular Orbitals for the ligand BNC-1 and a comparison to similar carbenes used elsewhere

This study is available in Dalton Transactions. As usual, I’m honored to be a part of this international collaboration, and I’m deeply thankful to the amazing Prof. José Oscar Carlos Jiménez-Halla for inviting me to be a part of it.

Yoshitaka Kimura, Leonardo I. Lugo-Fuentes, Souta Saito, J. Oscar C. Jimenez-HallaJoaquín Barroso-FloresYohsuke YamamotoMasaaki Nakamoto and Rong Shang* “A boron, nitrogen-containing heterocyclic carbene (BNC) as a redox active ligand: synthesis and characterization of a lithium BNC-aurate complex”, Dalton Trans., 2022,51, 7899-7906 https://doi.org/10.1039/D2DT01083F

About joaquinbarroso

Computational and theoretical chemist in his early forties, in love with life, science, baseball, and literature. Science literacy makes us responsible citizens, it is therefore a scientific duty to talk, write, and engage with the general public; as Feynman said, if you find science boring, your learning from the wrong teacher. "Make like a molecule and react!"

Posted on June 1, 2022, in Chemistry, Computational Chemistry, Gold, Inorganic Chemistry, Paper and tagged , , , , , , , , , , , , , . Bookmark the permalink. 1 Comment.

  1. Greetings. I do not understand how the higher LUMO+1 orbital will be the acceptor while the lower energy LUMO is vacant. Please can you rationalize this. Thank you.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: