Blog Archives

Au(I) Chemistry No.3 – New paper in Dalton Transactions


Stabilizing Gold in low oxidation states is a longstanding challenge of organometallic chemistry. To do so, a fine tuning of the electron density provided to an Au atom by a ligand via the formation of a σ bond. The group of Professor Rong Shang at the University of Nagasaki has accomplished the stabilization of an aurate complex through the use of a boron, nitrogen-containing heterocyclic carbene; DFT calculations at the wB97XD/(LANL2TZ(f),6-311G(d)) level of theory revealed that this ligand exhibits a high π-withdrawing character of the neutral 4π B,N-heterocyclic carbene (BNC) moiety and a 6π weakly aromatic character with π-donating properties, implying that this is the first cyclic carbene ligand that is able to be tuned between π-withdrawing (Fischer-type)- and π-donating (Schrock-type) kinds.

A π-withdrawing character on part of the ligand is important to allow the electron-rich gold center back donate some of its excess electron density, this way preventing its oxidation. A modification of Bertrand’s cyclic (alkyl)(amino)carbene (CAAC) has allowed Shang and co-workers to perform the two electrons Au(I) reduction to form the aurate shown in figure 1 (CCDC 2109027). This work also reports on the modular synthesis of the BNC-1 ligand and the mechanism was calculated once again by Leonardo “Leo” Lugo.

Figure 1. Compound 4a (H atoms omitted for clarity)

The ability of the BNC-1 ligand to accept gold’s back donation is reflected on the HOMO/LUMO gap as shown in Figure 2; while BNC-1 has a gap of 7.14 eV, the classic NHC carbene has a gap of 11.28 eV, furthermore, in the case of NHC the accepting orbital is not LUMO but LUMO+1. Additionally, the NBO delocalization energies show that the back donation from Au 5d orbital to the C-N antibonding π* orbital is about half that expected for a Fischer type carbene, suggesting an intermediate character between π accepting and π donating carbene. On the other hand, the largest interaction corresponds to the carbanion density donated to Au vacant p orbital (ca. 45 kcal/mol). All these observations reveal the successful tuning of the electron density on BNC-1.

Figure 2. Frontier Molecular Orbitals for the ligand BNC-1 and a comparison to similar carbenes used elsewhere

This study is available in Dalton Transactions. As usual, I’m honored to be a part of this international collaboration, and I’m deeply thankful to the amazing Prof. José Oscar Carlos Jiménez-Halla for inviting me to be a part of it.

Yoshitaka Kimura, Leonardo I. Lugo-Fuentes, Souta Saito, J. Oscar C. Jimenez-HallaJoaquín Barroso-FloresYohsuke YamamotoMasaaki Nakamoto and Rong Shang* “A boron, nitrogen-containing heterocyclic carbene (BNC) as a redox active ligand: synthesis and characterization of a lithium BNC-aurate complex”, Dalton Trans., 2022,51, 7899-7906 https://doi.org/10.1039/D2DT01083F

Aurides Chemistry – New Paper in Organometallics


Compound 2 represents the first structural example of a 12 e− auride complex, with a pseudohalide/hydride nature in bonding. According to our NBO calculations, this electron deficient gold center is stabilized by weak intramolecular interactions between Au p orbitals and σC−C and σC−H bonds of adjacent aromatic rings together with a Ga−Au−Ga 3 centers−2 electrons bond (I like the term ‘banana bond‘, don’t you?).

Fig. 1 Crystal structure for Compound 2. Au in the center is effectively an auride.

I was invited to participate in this wonderful venture by my good friend and colleague Dr. José Oscar Carlos Jiménez-Halla, from the University of Guanajuato, Mexico, with whom we’re now working with Prof. Rong Shang at the Hiroshima University. Prof. Shang has synthesized this portentous Auride complex and over the last year, Leonardo “Leo” Lugo has worked with Oscar and I in calculating their electronic structure and bonding properties.

Gold catalysis is an active area of research but low valent Au compounds are electron deficient and therefore highly reactive and elusive; that’s why researchers prefer to synthesize these compounds in situ, to harness their catalytic properties before they’re lost. Power’s digalladeltacyclane was used as a ligand framework to bind to a Au(I) center, which became reduced after the addition and breaking of the Ga−Ga bond while the opposite face of the metallic center became blocked by the bulky aromatic groups on the main ligand. NBO calculations at the M05-2X/[LANL2TZ(f),6-311G(d,p)] and QTAIM BCP analysis show the main features of Au bonding in 2, noteworthy features are the 3c−2e bond (banana) and the σC−C and σC−H donations (See figure 2).

Fig.2 Natural Hybrid Composition for the Ga−Au−Ga ‘banana‘ bond (left). Bond Critical Points (BCPs) for Au in 2 (right).

One of the most interesting features of this compound is the fact that Au(PPh3)Cl reacts differently to the digallane ligand than it does to analogous B−B, Si−Si, or Sn−Sn bonds. The Au−Cl bond does not undergo metathesis as with B−B, nor does it undergo an oxidative addition, so to further understand the chemistry of−and leading to−compound 2, the reaction mechanism energy profile was calculated in a rather painstakingly effort (Kudos, Leo, and a big shoutout to my friend Dr. Jacinto Sandoval for his one on one assistance). Figure 3 shows the energy profile for the reaction mechanism for the formation of 2 from Power’s digallane reagent and Au(PPh3)Cl.

Fig. 3 Free Energy profile for the formation of 2. All values, kcal/mol

You can read more details about this research in Organometallics DOI:10.1021/acs.organomet.0c00557. Thanks again to Profs. Rong Shang and Óscar Jiménez-Halla for bringing me on board of this project and to Leo for his relentless work getting those NBO calculations done; this is certainly the beginning of a golden opportunity for us to collaborate on a remarkable field of chemistry, it has certainly made me go bananas over Aurides chemistry. OK I’ll see myself out.

%d bloggers like this: