Blog Archives

NIST CCCBDB – Vibrational Scaling Factors & ThermoChem Data

The Computational Chemistry Comparison and Benchmark DataBase (CCCBDB) from the National Institute of Standards and Technology (NIST) collects experimental and calculated thermochemistry—related values for 1968 common molecules, constituting a vast source of benchmarks for various kinds of calculations.

In particular, scaling factors for vibrational frequencies are very useful when calculating vibrational spectra. These scaling factors are arranged by levels of theory ranging from HF to MP2, DFT, and multireference methods. These scaling factors are obtained by least squares regression between experimental and calculated frequencies for a set of molecules at a given level of theory.

Aside from vibrational spectroscopy, a large number of structural and energetic properties can be found and estimated for small molecules. A quick formation enthalpy can be calculated from experimental data and then compared to the reported theoretical values at a large number of levels of theory. Moments of inertia, enthalpies, entropies, charges, frontier orbital gaps, and even some odd values or even calculations gone awry are pointed out for you to know if you’re dealing with a particularly problematic system. The CCCB Database includes tutorials and input/output files for performing these kinds of calculations around thermochemistry, making it also a valuable learning resource.

Every computational chemist should be aware of this site, particularly when collaborating with experimentalists or when carrying calculations trying to replicate experimental data. The vastness of the site calls for a long dive to explore their possibilities and capabilities for more accurate calculations.

This is the first time I reblog a post from a fellow computational chemist and the reason why I do it is because of its beautiful simplicity and usefulness. Given the scope this blog has taken I think this post becomes most appropriate. This post will show you how to create an energy level diagram using nothing but MS Excel.
Kudos to ‘Eutactic’, from Australia, for coming up with a nice solution to this problem. Check out his blog at
Thanks for letting me repost it 🙂


I worked out a very quick and easy way to generate level schemes in Excel, based on a query from one of the other students in the group. Normally I would resort to something like the astonishing TikZ for this sort of task, however our group is very much a Microsoft Office ‘What You See Is A Metaphor For Cosmic Horror‘ group and recommending that a colleague learns two new markup languages to produce a figure is probably not helpful in the short term. One of the issues with charting energy levels in Excel is that levels are typically represented by horizontal bars connected at their vertices with lines representing transitions. Whilst Excel does have a horizontal bar as a marker, it possesses two show-stopping limitations:

  1. It is only uniformly scalable, and can only be scaled so far – we cannot make it anywhere near wide and…

View original post 222 more words

%d bloggers like this: