Blog Archives

Photosynthesis in the near-IR. A New paper in JCTC


Photosynthetic organisms are so widespread around the globe they have adapted to various solar lighting conditions to thrive. The bacteria Blastochloris viridis absorbs light in the near infrared region of the electromagnetic spectrum, in fact, it holds the record for the longest wavelength (~1015 nm) absorbing organism whose Light Harvesting complex 1 (LHC1) has been elucidated. Despite their adaptation to a wide number of light conditions, photosynthetic organism can only make use of so many pigments or chromophores; the LHC1 (Figure 1) in B. viridis in fact is made up of Bacteriochlorophyll-b (BChl-b) molecules, one of the most abundant photosynthetic pigments on Earth, whose main absorption in solution (MeOH) is observed at 795 nm.

Figure 1. B. viridis LHC1 (PDB 6ET5)

So, how can B. viridis use BChl-b molecules to absorb near IR radiation and how does it achieve this remarkable red-shifting effect? The LHC1 structure was solved in 2018 by Qian et al. through Cryo-EM at a 2.9 Å resolution; it is comprised of 17 protein subunits surrounding the so called photosynthetic pigments special pair. Each of these subunits is made up of three α-helix structures surrounding two BChl-b and one dihydroneurosporene (DHN) molecule for a total of 34 of these photosynthetic pigments inside the LHC and 17 DHN molecules interacting between the protein structures and the
main BChl-b pigments.

It was Dr. Jacinto Sandoval and Gustavo “Gus” Mondragón who brought this facts to our attention during their survey of potential candidates for calculating exotic exciton transfer mechanisms in photosynthetic organisms, part of Gustavo’s PhD thesis. To them, it was clear from the start that some sort of cooperative effect between pigments was operating and possibly leading to the red-shifted absorption, therefore a careful dissection of all possible pigments combinations was carried out and their UV-Vis spectra were calculated at the CAMB3LYP/cc-pVDZ on PBE0/6-31G(d) optimized geometries, leading to the systems shown below in figure 2.

Figure 2. Two and Three containing pigments systems under study

System B7 reproduced the red-shifted absorption at 1026 nm, but since the original structure was fitted from the Cryo-EM with a 2.9 Å resolution, “Gus” suggested reaching out to the group of Prof. Andrés Gerardo Cisneros and Dr. Jorge Nochebuena at UT Dallas for carrying out QM/MM calculations; this optimization included the proteins surrounding the pigments in the MM layer and the interacting residues (Hys coordinated to Mg2+ ions in BChl-b) along the chromophores were incorporated into the QM layer, however the thus obtained minima for the B7 system lost the main absorption in the near-IR region, therefore, Dr. Nochebuena suggested running an MD simulation (45 ns) and took a random sampling of ten structures (Figure 3).

Figure 3. Structure sampling of the MD structures based on k-means
clustering analysis.

All structures in the sampling reproduced the red-shifted absorption (~1000 nm) successfully proving that cooperative and dynamic effects allow B. viridis to perform photosynthesis with low energy radiation (Figure 4). Therefore, close intermolecular interactions along with thermal/dynamical fluctuations allow for a regular pigment such as BChl-b to form near-IR absorbing photosystems for organisms to thrive in low conditions of solar light.

Figure 4. Calculated spectra of representative structure 7 vs the experimental spectrum. (a) Calculated spectrum (on green) including the DHN
molecule fragment. (b) Calculated spectrum (blue) excluding the DHN molecule fragment.

If you want to read further details, this work is now published in the Journal of Chemical Theory and Computation of the American Chemical Society. I’ll talk about this and other ventures in photosynthesis next week at the WATOC conference in Vancouver, swing by to talk CompChem!

Papers for the 21st Century


The format of a research paper hasn’t changed much throughout history, despite the enormous changes in platforms available for their consumption and the near extinction of the library issue. Convenient electronic files such as PDFs still resemble printed-and-bound-in-issues papers in their layout instead of exploiting the seemingly endless capabilities of the electronic format.

For instance, why do we still need to have page numbers? a DOI is a full, traceable and unique identification for each work and there are so many nowadays that publishers have to pour them out as e-first, ASAPs, and just accepted before having them assigned page numbers, a process which is still a concern for some researchers (and even for some of the organizations funding them or evaluating their performance). Numbers for Issues, Volumes and Pages are library indexes needed to sort and retrieve information from physical journals but in the e-realm where one can browse all issues online, perform a search and download the results these indexes are hardly of any use, only the year is helpful in establishing a chronological order to the development of ideas. This brings me to the next issue (no pun intended): If bound-issues are no longer a thing then neither should be covers. Being selected for a cover is a huge honor, it means the editorial staff think your work stands out from the published works in the same period; but nowadays is an honor that comes to a price, sometimes a high price. With the existence of covers, back-covers, inner-covers and inner-back-covers and whatnot at USD$1,500 a piece, the honor gets a bit diluted. Advertisers know this and now they place their ads as banners, pop-ups and other online digital formats instead of -to some extent- paying for placing ads in the pages of the journals.

I recently posted a quick informal poll on Twitter about the scientific reading habits of chemists and I confirmed what I expected: only one in five still prefers to mostly read papers on actual paper*, the rest rely on an electronic version such as HTML full text or the most popular PDF on a suitable reader.

https://platform.twitter.com/widgets.js

What came as a surprise for me was that in the follow up poll, Reference Manager programs such as Mendeley, Zotero, EndNote or ReadCube are only preferred by 15% while 80% prefer the PDF reader (I’m guessing Acrobat Reader might be the most popular.) A minority seems to prefer the HTML full text version, which I think is the richest but hardly customizable for note taking, sharing, or, uhm hoarding.

https://platform.twitter.com/widgets.js

I’m a Mendeley user because I like the integration between users, its portability between platforms and the synchronization features but if I were to move to another reference manager software it would be ReadCube. I like taking notes, highlighting text, and adding summaries and ideas onto the file but above all I like the fact that I can conduct searches in the myriad of PDF files I’ve acumulated over the years. During my PhD studies I had piles of (physical) paper and folders with PDF files that sometimes were easier to print than to sort and organize (I even had a spreadsheet with the literature read-a nightmarish project in itself!)

So, here is my wish list for what I want e-papers in the 21st century to do. Some features are somewhat available in some journals and some can be achieved within the PDF itself others would require a new format or a new platform to be carried out. Please comment what other features would you like to have in papers.

  • Say goodbye to the two columns format. I’m zooming to a single column anyway.
  • Pop-up charts/plots/schemes/figures. Let me take a look at any graphical object by hovering (or 3D touching in iOS, whatever) on the “see Figure X” legend instead of having to move back and forth to check it, specially when the legend is “see figure SX” and I have to go to the Supporting Information file/section.
  • Pop-up References. Currently some PDFs let you jump to the References section when you click on one but you can’t jump back but scroll and find the point where you left.
  • Interactive objects. Structures, whether from X-ray diffraction experiments or calculations could be deposited as raw coordinates files for people to play with and most importantly to download** and work with. This would increase the hosting journals need to devote to each work so I’m not holding my breath.
  • Audio output. This one should be trickier, but far most helpful. I commute long hours so having papers being read out loud would be a huge time-saver, but it has to be smart. Currently I make Siri read papers by opening them in the Mendeley app, then “select all“, “voice“, but when it hits a formula, or a set of equations the flow is lost (instead of reading water as ‘H-Two-O‘, it reads ‘H-subscript Two-O‘; try having the formula of a perovskite be read)
  • A compiler that outputs the ‘traditional version‘ for printing. Sure, why not.

I realize this post may come out as shallow in view of the Plan-S or FAIR initiatives, sorry for that but comfort is not incompatible with accessibility.

What other features do you think research papers should have by now?



* It is true that our attention -and more importantly- our retention of information is not the same when we read on paper than on a screen. Recently there was an interview on this matter on Science Friday.
** I absolutely hate having a Supporting Information section with long PDF lists of coordinates to copy-paste and fix into a new input file. OpenBabel, people!

%d bloggers like this: