Category Archives: JCTC

Photosynthesis in the near-IR. A New paper in JCTC


Photosynthetic organisms are so widespread around the globe they have adapted to various solar lighting conditions to thrive. The bacteria Blastochloris viridis absorbs light in the near infrared region of the electromagnetic spectrum, in fact, it holds the record for the longest wavelength (~1015 nm) absorbing organism whose Light Harvesting complex 1 (LHC1) has been elucidated. Despite their adaptation to a wide number of light conditions, photosynthetic organism can only make use of so many pigments or chromophores; the LHC1 (Figure 1) in B. viridis in fact is made up of Bacteriochlorophyll-b (BChl-b) molecules, one of the most abundant photosynthetic pigments on Earth, whose main absorption in solution (MeOH) is observed at 795 nm.

Figure 1. B. viridis LHC1 (PDB 6ET5)

So, how can B. viridis use BChl-b molecules to absorb near IR radiation and how does it achieve this remarkable red-shifting effect? The LHC1 structure was solved in 2018 by Qian et al. through Cryo-EM at a 2.9 Å resolution; it is comprised of 17 protein subunits surrounding the so called photosynthetic pigments special pair. Each of these subunits is made up of three α-helix structures surrounding two BChl-b and one dihydroneurosporene (DHN) molecule for a total of 34 of these photosynthetic pigments inside the LHC and 17 DHN molecules interacting between the protein structures and the
main BChl-b pigments.

It was Dr. Jacinto Sandoval and Gustavo “Gus” Mondragón who brought this facts to our attention during their survey of potential candidates for calculating exotic exciton transfer mechanisms in photosynthetic organisms, part of Gustavo’s PhD thesis. To them, it was clear from the start that some sort of cooperative effect between pigments was operating and possibly leading to the red-shifted absorption, therefore a careful dissection of all possible pigments combinations was carried out and their UV-Vis spectra were calculated at the CAMB3LYP/cc-pVDZ on PBE0/6-31G(d) optimized geometries, leading to the systems shown below in figure 2.

Figure 2. Two and Three containing pigments systems under study

System B7 reproduced the red-shifted absorption at 1026 nm, but since the original structure was fitted from the Cryo-EM with a 2.9 Å resolution, “Gus” suggested reaching out to the group of Prof. Andrés Gerardo Cisneros and Dr. Jorge Nochebuena at UT Dallas for carrying out QM/MM calculations; this optimization included the proteins surrounding the pigments in the MM layer and the interacting residues (Hys coordinated to Mg2+ ions in BChl-b) along the chromophores were incorporated into the QM layer, however the thus obtained minima for the B7 system lost the main absorption in the near-IR region, therefore, Dr. Nochebuena suggested running an MD simulation (45 ns) and took a random sampling of ten structures (Figure 3).

Figure 3. Structure sampling of the MD structures based on k-means
clustering analysis.

All structures in the sampling reproduced the red-shifted absorption (~1000 nm) successfully proving that cooperative and dynamic effects allow B. viridis to perform photosynthesis with low energy radiation (Figure 4). Therefore, close intermolecular interactions along with thermal/dynamical fluctuations allow for a regular pigment such as BChl-b to form near-IR absorbing photosystems for organisms to thrive in low conditions of solar light.

Figure 4. Calculated spectra of representative structure 7 vs the experimental spectrum. (a) Calculated spectrum (on green) including the DHN
molecule fragment. (b) Calculated spectrum (blue) excluding the DHN molecule fragment.

If you want to read further details, this work is now published in the Journal of Chemical Theory and Computation of the American Chemical Society. I’ll talk about this and other ventures in photosynthesis next week at the WATOC conference in Vancouver, swing by to talk CompChem!

New paper in Journal of Chemical Theory and Computation


Happy new year to all my readers!

Having a new paper published is always a matter of happiness for this computational chemist but this time I’m excedingly excited about anouncing the publishing of a paper in the Journal of Chemical Theory and Computation, which is my highest ranked publication so far! It also establishes the consolidation of our research group at CCIQS as a solid and competitive group within the field of theoretical and computational chemistry. The title of our paper is “In Silico design of monomolecular drug carriers for the tyrosine kinase inhibitor drug Imatinib based on calix- and thiacalix[n]arene host molecules. A DFT and Molecular Dynamics study“.

In this article we aimed towards finding a suitable (thia-) calix[n]arene based drug delivery agent for the drug Imatinib (Gleevec by Novartis), which is a broadly used powerful Tyrosine Kinase III inhibitor used in the treatment of Chronic Myeloid Leukaemia and, to a lesser extent, Gastrointestinal Stromal Tumors; although Imatinib (IMB) exhibits a bioavailability close to 90% most of it is excreted, becomes bound to serum proteins or gets accumulated in other tissues such as the heart causing several undesired side effects which ultimately limit its use. By using a molecular capsule we can increase the molecular weight of the drug thus increasing its retention, and at the same time we can prevent Imatinib to bind, in its active form, to undesired proteins.

We suggested 36 different calix and thia-calix[n]arenes (CX) as possible candidates; IMB-CX complexes were manually docked and then optimized at the B97D/6-31G(d,p) level of theory; Stephan Grimme’s B97D functional was selected for its inclusion of dispersion terms, so important in describing π-π interactions. Intermolecular interaction energies were calculated under the Natural Bond Order approximation; a stable complex was needed but a too stable complex would never deliver its drug payload! This brings us to the next part of the study. A monomolecular drug delivery agent must be able to form a stable complex with the drug but it must also be able to release it. Molecular Dynamics simulations (+100 ns) and umbrella sampling methods were used to analyse the release of the drug into the aqueous media.

Optimized geometries for all complexes under study (B97D/6-31G*)

Optimized geometries for the 20 most stable complexes under study (B97D/6-31G*)

Potential Mean Force profiles for the four most stable complexes for position N1 and  N2 from the QM simulations are shown below (Red, complexes in the N1 position, blue, N2 position). These plots, derived from the MD simulations  give us an idea of the final destination of the drug respect of the calixarene carrier. In the next image, the three preferred structures (rotaxane-like; inside; released) for the final outcome of the delivery process are shown. The stability of the complexes was also assessed by calculating the values of ΔG binding through the use of the Poisson equations.

PMF for the most stable compounds

PMF for the most stable compounds

General MD simulation final structures

General MD simulation final structures

Thanks to my co-authors Maria Eugenia Sandoval-Salinas and Dr. Rodrigo Galindo-Murillo for their enormous contributions to this work; without their hard work and commitment to the project this paper wouldn’t have been possible.

%d bloggers like this: