Monthly Archives: August 2015

Fluorescent Chemosensors for Chloride in Water – Sensors and Actuators B: Chemical


A new publication is now available in which we calculated the binding properties of a fluorescent water-soluble chemosensor for halides which is specially sensitive for chloride. Once again, we were working in collaboration with an experimental group who is currently involved in developing all kinds of sustainable chemosensors.

The electronic structure of the chromophore was calculated at the M06-2X/6-311++G(d,p) level of theory under the SMD solvation model (water) at various pH levels which was achieved simply by changing the protonation and charges upon the ligand. Wiberg bond indexes from the Natural Population Analysis showed strong interactions between the chloride ion and the chromophore. Also, Fukui indexes were calculated in order to find the most probable binding sites. A very interesting feature of this compound is its ability to form a cavity without being a macrocycle! I deem it a cavity because of the intramolecular interactions which prevent the entrance of solvent molecules but that can be reversibly disrupted for the inclusion of an anion. In the figure below you can observe the remarkable quenching effect chloride has on the anion.

Sensors

A quick look to the Frontier Molecular Orbitals (FMO’s) show that the chloride anion acts as an electron donor to the sensor.

Frontier Molecular Orbitals

Frontier Molecular Orbitals

If you are interested in more details please check: Bazany-Rodríguez, I. J., Martínez-Otero, D., Barroso-Flores, J., Yatsimirsky, A. K., & Dorazco-González, A. (2015). Sensitive water-soluble fluorescent chemosensor for chloride based on a bisquinolinium pyridine-dicarboxamide compound. Sensors and Actuators B: Chemical, 221, 1348–1355. http://doi.org/10.1016/j.snb.2015.07.031

Thanks to Dr. Alejandro Dorazco from CCIQS for asking me to join him in this project which currently includes some other join ventures in the realm of molecular recognition.

Advertisements

Simulation of Raman Spectroscopy and crystal cell effects – Selenium Carboxylate Eur. J. Inorg. Chem.


Computing spectroscopic features of molecules is always an interesting challenge, specially when intermolecular contacts are into play. Take vibrational spectroscopy for instance, all the non-covalent interactions present in a solid will have an important effect on the the calculated frequencies and their intensities. However calculating the spectroscopical properties of a solid quickly becomes a daunting task.

My colleague and friend Dr. Vojtech Jancik asked me to calculate the Raman frequencies for a new compound: Selenoyl bis-carboxylate, which according to him was very hard to obtain due to the very nature of selenium. So we performed various calculations on the isolated molecule to reproduce the measured Raman spectrum but we soon realized that a calculation on the crystal cell was needed if we wanted to get a more thorough picture of the experiment.

The level of theory used was PBEPBE/LANL2DZ. Optimization of the title structure pointed to a low coordination capacity by carboxylate groups as evidenced by the longer Se -O-C=O distances and reduced Wiberg bond indexes. A blue shift was observed for all bands and so we calculated the Raman frequencies at the crystal structure which gave us a better correspondence between spectra. Finally we computed the Raman spectra for the full unit cell comprised of four molecules with which an excellent agreement was obtained (a scaling factor of 0.8 was used).

Unfortunately we failed to further extend this calculation to a larger system with four unit cells and 32 molecules apparently due to insufficient memory; the calculation just stalled and stopped without error after consuming its time in the queue. I’ll try to take a look into it some day.

https://vine.co/v/eaQOH57nADO/embed/simple?audio=1https://platform.vine.co/static/scripts/embed.js

You can read the whole story in: Synthesis and Crystal Structure of the First Selenonyl Bis(carboxylate) SeO2(O2CCH3)2
Lukas Richtera · Vojtech Jancik · Joaquín Barroso‐Flores · Petr Nykel · Jiri Touzin · Jan Taraba

European Journal of Inorganic Chemistry 06/2015; 2015(18):2923–2927. DOI:10.1002/ejic.201500271
https://platform.vine.co/static/scripts/embed.js

Thanks for reading!

%d bloggers like this: