I was just asked if it is possible to perform DFT-D3 calculations in Gaussian and my first answer was to use the following  keyword:

EmpiricalDispersion=GD3

which is available in G16 and G09 only in revision D, apparently.

There are also some overlays that can be used to invoke the use dispersion in various scenarios:

IOp(3/74=x) Exchange and Correlation Potentials

-77

-76

-60

-59

DSD-PBEP86 (double hybrid, DFT-D3).

PW6B95-D3.

B2PLYP-D3 (double hybrid, DFT-D3).

B97-D (DFT-D3).

IOp(3/76=x) Mixing of HF and DFT.

-33 PW6B95 and PW6B95-D3 coefficients.

IOp(3/124=x) Empirical dispersion term.

30

40

50

Force dispersion type 3 (Grimme DFT-D3).

Force dispersion type 4 (Grimme DFT-D3(BJ)).

Force dispersion type 5 (Grimme D3, PM7 version).

 

The D3 correction method of Grimme defines the van der Waals energy like:

$\displaystyle E_{\rm disp} = -\frac{1}{2} \sum_{i=1}^{N_{at}} \sum_{j=1}^{N_{at...
...{6ij}} {r_{ij,{L}}^6} +f_{d,8}(r_{ij,L})\,\frac{C_{8ij}} {r_{ij,L}^8} \right ),$

where coefficients $ C_{6ij}$ are adjusted depending on the geometry of atoms i and j. The damping D3 function for is:

$\displaystyle f_{d,n}(r_{ij}) = \frac{s_n}{1+6(r_{ij}/(s_{R,n}R_{0ij}))^{-\alpha_{n}}},$

where the values of s are adjustable parameters fit for the exchange-correlation functionals used in each calculation.

Advertisement