Category Archives: ACS
Photosynthesis in the near-IR. A New paper in JCTC
Photosynthetic organisms are so widespread around the globe they have adapted to various solar lighting conditions to thrive. The bacteria Blastochloris viridis absorbs light in the near infrared region of the electromagnetic spectrum, in fact, it holds the record for the longest wavelength (~1015 nm) absorbing organism whose Light Harvesting complex 1 (LHC1) has been elucidated. Despite their adaptation to a wide number of light conditions, photosynthetic organism can only make use of so many pigments or chromophores; the LHC1 (Figure 1) in B. viridis in fact is made up of Bacteriochlorophyll-b (BChl-b) molecules, one of the most abundant photosynthetic pigments on Earth, whose main absorption in solution (MeOH) is observed at 795 nm.
So, how can B. viridis use BChl-b molecules to absorb near IR radiation and how does it achieve this remarkable red-shifting effect? The LHC1 structure was solved in 2018 by Qian et al. through Cryo-EM at a 2.9 Å resolution; it is comprised of 17 protein subunits surrounding the so called photosynthetic pigments special pair. Each of these subunits is made up of three α-helix structures surrounding two BChl-b and one dihydroneurosporene (DHN) molecule for a total of 34 of these photosynthetic pigments inside the LHC and 17 DHN molecules interacting between the protein structures and the
main BChl-b pigments.
It was Dr. Jacinto Sandoval and Gustavo “Gus” Mondragón who brought this facts to our attention during their survey of potential candidates for calculating exotic exciton transfer mechanisms in photosynthetic organisms, part of Gustavo’s PhD thesis. To them, it was clear from the start that some sort of cooperative effect between pigments was operating and possibly leading to the red-shifted absorption, therefore a careful dissection of all possible pigments combinations was carried out and their UV-Vis spectra were calculated at the CAMB3LYP/cc-pVDZ on PBE0/6-31G(d) optimized geometries, leading to the systems shown below in figure 2.

System B7 reproduced the red-shifted absorption at 1026 nm, but since the original structure was fitted from the Cryo-EM with a 2.9 Å resolution, “Gus” suggested reaching out to the group of Prof. Andrés Gerardo Cisneros and Dr. Jorge Nochebuena at UT Dallas for carrying out QM/MM calculations; this optimization included the proteins surrounding the pigments in the MM layer and the interacting residues (Hys coordinated to Mg2+ ions in BChl-b) along the chromophores were incorporated into the QM layer, however the thus obtained minima for the B7 system lost the main absorption in the near-IR region, therefore, Dr. Nochebuena suggested running an MD simulation (45 ns) and took a random sampling of ten structures (Figure 3).

clustering analysis.
All structures in the sampling reproduced the red-shifted absorption (~1000 nm) successfully proving that cooperative and dynamic effects allow B. viridis to perform photosynthesis with low energy radiation (Figure 4). Therefore, close intermolecular interactions along with thermal/dynamical fluctuations allow for a regular pigment such as BChl-b to form near-IR absorbing photosystems for organisms to thrive in low conditions of solar light.

molecule fragment. (b) Calculated spectrum (blue) excluding the DHN molecule fragment.
If you want to read further details, this work is now published in the Journal of Chemical Theory and Computation of the American Chemical Society. I’ll talk about this and other ventures in photosynthesis next week at the WATOC conference in Vancouver, swing by to talk CompChem!
DFT Estimation of pKb Values – New Paper in JCIM
As a continuation of our previous work on estimating pKa values from DFT calculations for carboxylic acids, we now present the complementary pKb values for amino groups by the same method, and the coupling of both methodologies for predicting the isoelectric point -pI- values of amino acids as a proof of concept.
Analogously to our work on pKa, we now used the Minimum Surface Electrostatic Potentia, VS,min, as a descriptor of the availability of Nitrogen’s lone pair and correlated it with the experimental basicity of a large number of amines, separated into three groups: primary, secondary and tertiary amines.
Interestingly, the correlation coefficient between experimental and calculated pKb values decreases in the following order: primary (R2 = 0.9519) > secondary (R2 = 0.9112) > tertiary (R2 = 0.8172). This could be due to steric effects, the change in s-character of the lone pair or just plain old selection bias. Nevertheless, there is a good correlation between both values and the resulting equations can predict the pKb value of an amino group within less of a unit, which is very good for a statistical method that does not require the calculation of a full thermodynamic cycle.
We then took thirteen amino acids (those without titratable side chains) and calculated simultaneously VS,min and VS,max for the amino and the carboxyl group (this latter with the use of equation 2 from our previous work published in Molecules MDPI) and the arithmetical average of both gave us their corresponding pI values with an agreement of less than one unit.

This work is now available at the Journal of Chemical Information and Modeling (DOI: 10.1021/acs.jcim.9b01173); as always a shoutout is due to the people working on it: Leonardo “Leo” Lugo, Gustavo “Gus” Mondragón and leading the charge Dr. Jacinto Sandoval-Lira.
The Evolution of Photosynthesis
Recently, the journal ACS Central Science asked me to write a viewpoint for their First Reactions section about a research article by Prof. Alán Aspuru-Guzik from Harvard University on the evolution of the Fenna-Matthews-Olson (FMO) complex. It was a very rewarding experience to write this piece since we are very close to having our own work on FMO published as well (stay tuned!). The FMO complex remains a great research opportunity for understanding photosynthesis and thus the origin of life itself.
In said article, Aspuru-Guzik’s team climbed their way up a computationally generated phylogenetic tree for the FMO from different green sulfur bacteria by creating small successive mutations on the protein at a time while also calculating their photochemical properties. The idea is pretty simple and brilliant: perform a series of “educated guesses” on the structure of FMO’s ancestors (there are no fossil records of FMO so this ‘educated guesses’ are the next best thing) and find at what point the photochemistry goes awry. In the end the question is which led the way? did the photochemistry led the way of the evolution of FMO or did the evolution of FMO led to improved photochemistry?
Since both the article and viewpoint are both published as open access by the ACS, I wont take too much space here re-writing the whole thing and will instead exhort you to read them both.
Thanks for doing so!
Tribology – New paper in JPC A
Tribology isn’t exactly an area with which us chemists are most familiar, yet chemistry has a great impact on this branch of physics of high industrial importance. Tribology is basically the science which studies the causes and consequences of friction between surfaces.
The plastic bag industry requires the use of chemical additives to reduce the electrostatic adherence between sheets of plastic. My good old friend Dr. Armando Gama has studied through Dissipative Particle Dynamics (DPD) coarse-grained simulations the friction coefficients of having two slightly different molecules: erukamide and behenamide, which only differ in the presence of a double bond between carbon atoms 12 and 13 (Fig1).

Fig 1
Double bonds in erukamide pile together through pi-pi stacking interactions (Fig2) which are absent in behenamide which is why these last ones are able to slide better between each other (Fig3). Interaction energies calculated for the inner chains at the same level of theory are 44.21 and 34.46 kcal/mol for erukamide and behenamide, respectively. As per the suggestion of a referee we extended the calculations to a 2D system by placing seven molecules on graphene, which once again was kept at the optimized geometry of its isolated state, at four bonds of separation in order to prevent steric crowding (Fig 4).

Fig 4
The paper is now available at JPC-A. Thanks to Dr. Gama for this great opportunity to work with his team, I know it wont be the last.
New paper in JACS
Well, I only contributed with the theoretical section by doing electronic structure calculations, so it isn’t really a paper we can ascribe to this particular lab, however it is really nice to see my name in JACS along such a prominent researcher as Prof. Chad Mirkin from Northwestern University, in a work closely related to my area of research interest as macrocyclic recognition agents.
In this manuscript, a calix[4]arene is allosterically opened and closed reversibly by coordinating different kinds of ligands to a platinum center linked to the macrocycle. (This approach has been referred to as the weak link approach.) I recently visited Northwestern and had a great time with José Mendez-Arroyo, the first author, who showed me around and opened the possibility for further work between our research groups.
Closed, semi-open and fully open conformations; selectivity is modulated through cavity size. (Ligands: Green = Chloride; Blue = Cyanide)
Here at UNAM we calculated the interaction energies for the two guests that were successfully inserted into the cavity: N-methyl-pyridinium (Eint = 57.4 kcal/mol) and Pyridine-N-oxide (Eint = +200.0 kcal/mol). Below you can see the electrostatic potential mapped onto the electron density isosurface for one of the adducts. Relative orientation of the hosts within the cavity follows the expected (anti-) alignment of mutual dipole moments. At this level of theory, we could easily be inclined to assert that the most stable interaction is indeed the one from the semi-open compound and that this in turn is due to the fact that host and guest are packed closer together but there is also an orbital issue: Pyridine Oxide is a better electron acceptor than N-Me-pyridinium and when we take a closer look to the (Natural Bonding) orbitals interacting it becomes evident that a closer location does not necessarily yields a stronger interaction when the electron accepting power of the ligand is weaker (which is, in my opinion, both logic and at the same time a bit counterintuitive, yet fascinating, nonetheless).
All calculations were performed at the B97D/LANL2DZ level of theory with the use of Gaussian09 and NBO3.1 as provided within the former. Computing time at UNAM’s supercomputer known as ‘Miztli‘ is fully acknowledged.
The full citation follows:
A Multi-State, Allosterically-Regulated Molecular Receptor With Switchable Selectivity
Jose Mendez-Arroyo †, Joaquín Barroso-Flores §,Alejo M. Lifschitz †, Amy A. Sarjeant †, Charlotte L. Stern †, and Chad A. Mirkin *†
Thanks to José Mendez-Arroyo for contacting me and giving me the opportunity to collaborate with his research; I’m sure this is the first of many joint projects that will mutually benefit our groups.
New paper in Journal of Chemical Theory and Computation
Happy new year to all my readers!
Having a new paper published is always a matter of happiness for this computational chemist but this time I’m excedingly excited about anouncing the publishing of a paper in the Journal of Chemical Theory and Computation, which is my highest ranked publication so far! It also establishes the consolidation of our research group at CCIQS as a solid and competitive group within the field of theoretical and computational chemistry. The title of our paper is “In Silico design of monomolecular drug carriers for the tyrosine kinase inhibitor drug Imatinib based on calix- and thiacalix[n]arene host molecules. A DFT and Molecular Dynamics study“.
In this article we aimed towards finding a suitable (thia-) calix[n]arene based drug delivery agent for the drug Imatinib (Gleevec by Novartis), which is a broadly used powerful Tyrosine Kinase III inhibitor used in the treatment of Chronic Myeloid Leukaemia and, to a lesser extent, Gastrointestinal Stromal Tumors; although Imatinib (IMB) exhibits a bioavailability close to 90% most of it is excreted, becomes bound to serum proteins or gets accumulated in other tissues such as the heart causing several undesired side effects which ultimately limit its use. By using a molecular capsule we can increase the molecular weight of the drug thus increasing its retention, and at the same time we can prevent Imatinib to bind, in its active form, to undesired proteins.
We suggested 36 different calix and thia-calix[n]arenes (CX) as possible candidates; IMB-CX complexes were manually docked and then optimized at the B97D/6-31G(d,p) level of theory; Stephan Grimme’s B97D functional was selected for its inclusion of dispersion terms, so important in describing π-π interactions. Intermolecular interaction energies were calculated under the Natural Bond Order approximation; a stable complex was needed but a too stable complex would never deliver its drug payload! This brings us to the next part of the study. A monomolecular drug delivery agent must be able to form a stable complex with the drug but it must also be able to release it. Molecular Dynamics simulations (+100 ns) and umbrella sampling methods were used to analyse the release of the drug into the aqueous media.
Potential Mean Force profiles for the four most stable complexes for position N1 and N2 from the QM simulations are shown below (Red, complexes in the N1 position, blue, N2 position). These plots, derived from the MD simulations give us an idea of the final destination of the drug respect of the calixarene carrier. In the next image, the three preferred structures (rotaxane-like; inside; released) for the final outcome of the delivery process are shown. The stability of the complexes was also assessed by calculating the values of ΔG binding through the use of the Poisson equations.
Thanks to my co-authors Maria Eugenia Sandoval-Salinas and Dr. Rodrigo Galindo-Murillo for their enormous contributions to this work; without their hard work and commitment to the project this paper wouldn’t have been possible.