Blog Archives

Aurides Chemistry – New Paper in Organometallics


Compound 2 represents the first structural example of a 12 e− auride complex, with a pseudohalide/hydride nature in bonding. According to our NBO calculations, this electron deficient gold center is stabilized by weak intramolecular interactions between Au p orbitals and σC−C and σC−H bonds of adjacent aromatic rings together with a Ga−Au−Ga 3 centers−2 electrons bond (I like the term ‘banana bond‘, don’t you?).

Fig. 1 Crystal structure for Compound 2. Au in the center is effectively an auride.

I was invited to participate in this wonderful venture by my good friend and colleague Dr. José Oscar Carlos Jiménez-Halla, from the University of Guanajuato, Mexico, with whom we’re now working with Prof. Rong Shang at the Hiroshima University. Prof. Shang has synthesized this portentous Auride complex and over the last year, Leonardo “Leo” Lugo has worked with Oscar and I in calculating their electronic structure and bonding properties.

Gold catalysis is an active area of research but low valent Au compounds are electron deficient and therefore highly reactive and elusive; that’s why researchers prefer to synthesize these compounds in situ, to harness their catalytic properties before they’re lost. Power’s digalladeltacyclane was used as a ligand framework to bind to a Au(I) center, which became reduced after the addition and breaking of the Ga−Ga bond while the opposite face of the metallic center became blocked by the bulky aromatic groups on the main ligand. NBO calculations at the M05-2X/[LANL2TZ(f),6-311G(d,p)] and QTAIM BCP analysis show the main features of Au bonding in 2, noteworthy features are the 3c−2e bond (banana) and the σC−C and σC−H donations (See figure 2).

Fig.2 Natural Hybrid Composition for the Ga−Au−Ga ‘banana‘ bond (left). Bond Critical Points (BCPs) for Au in 2 (right).

One of the most interesting features of this compound is the fact that Au(PPh3)Cl reacts differently to the digallane ligand than it does to analogous B−B, Si−Si, or Sn−Sn bonds. The Au−Cl bond does not undergo metathesis as with B−B, nor does it undergo an oxidative addition, so to further understand the chemistry of−and leading to−compound 2, the reaction mechanism energy profile was calculated in a rather painstakingly effort (Kudos, Leo, and a big shoutout to my friend Dr. Jacinto Sandoval for his one on one assistance). Figure 3 shows the energy profile for the reaction mechanism for the formation of 2 from Power’s digallane reagent and Au(PPh3)Cl.

Fig. 3 Free Energy profile for the formation of 2. All values, kcal/mol

You can read more details about this research in Organometallics DOI:10.1021/acs.organomet.0c00557. Thanks again to Profs. Rong Shang and Óscar Jiménez-Halla for bringing me on board of this project and to Leo for his relentless work getting those NBO calculations done; this is certainly the beginning of a golden opportunity for us to collaborate on a remarkable field of chemistry, it has certainly made me go bananas over Aurides chemistry. OK I’ll see myself out.

A new paper on the Weak Link Approach


Chemically actuating a molecule is a very cool thing to do and the Weak Link Approach (WLA) allows us to do precisely that through the reversible coordination of one or various organometallic centers to a longer ligand that opens or closes a macrocyclic cavity. All this leads to an allosteric effect so important in biological instances available in inorganic molecules. Once again, the Mirkin group at Nortwestern University in Evanston, Illinois, has given me the opportunity to contribute with the calculations to the energetic properties of these actuators as well as their electronic properties for their use as molecular scavengers or selective capsules for various purposes such as drug delivery agents.

As in the previous WLA work (full paper), the NBODel procedure was used at the B97D/LANL2DZ level of theory, only this time the macrocycle consisted of two organometallic centers and for the first time the asymmetric opening of the cavity was achieved, as observed by NMR. With the given fragments, all possibilities shown in scheme 1 were obtained. The calculated bond energies for the Pt – S bonds are around 60 – 70 kcal/mol whereas for the Pt – Cl bonds the values are closer to 90 kcal/mol. This allows for a selective opening of the cavity which can then be closed by removing the chlorine atoms with the help of silver salts.

wla

For the case of complex mixture 4a, 4b, and 4c, the thermochemistry calculations show they are all basically isoenergetic with differences in the thousandths of kcal/mol. The possibilities for the groups in the weakly bonded ligands are enormous; currently, there is work being done about substituting those phenyl rings for calix[4]arenes in order to have a macrucyclic capsule made by macrocylic capusules.

Thanks to Andrea D’Aquino for taking me into her project, for all the stimulating discussions and her great ideas for expanding WLA into new avenues; I’m sure she’ll succeed in surprising us with more possibilities for these allosteric macrocycles.

The full paper is published in Inorganic Chemistry from the ACS (DOI: 10.1021/acs.inorgchem.7b02745). Thanks for reading and -if you made it this far into the post- happy new year!

%d bloggers like this: