# Blog Archives

## Geometry Optimizations for Excited States

Electronic excitations are calculated vertically according to the Frank—Condon principle, this means that the geometry does not change upon the excitation and we merely calculate the energy required to reach the next electronic state. But for some instances, say calculating not only the absorption spectra but also the emission, it is important to know what the geometry minimum of this final state looks like, or if it even exists at all (Figure 1). Optimizing the geometry of a given excited state requires the prior calculation of the vertical excitations whether via a multireference method, quantum Monte Carlo, or the Time Dependent Density Functional Theory, TD-DFT, which due to its lower computational cost is the most widespread method.

Most single-reference treatments, ab initio or density based, yield good agreement with experiments for lower states, but not so much for the higher excitations or process that involve the excitation of two electrons. Of course, an appropriate selection of the method ensures the accuracy of the obtained results, and the more states are considered, the better their description although it becomes more computationally demanding in turn.

In Gaussian 09 and 16, the argument to the ROOT keyword selects a given excited state to be optimized. In the following example, five excited states are calculated and the optimization is requested upon the second excited state. If no ROOT is specified, then the optimization would be carried out by default on the first excited state (Where L.O.T. stands for Level of Theory).

#p opt TD=(nstates=5,root=2)L.O.T.

Gaussian16 includes now the calculation of analytic second derivatives which allows for the calculation of vibrational frequencies for IR and Raman spectra, as well as transition state optimization and IRC calculations in excited states opening thus an entire avenue for the computation of photochemistry.

If you already computed the excited states and just want to optimize one of them from a previous calculation, you can read the previous results with the following input :

#p opt TD=(Read,Root=N)L.O.T.Density=Current Guess=Read Geom=AllCheck

Common problems. The following error message is commonly observed in excited state calculations whether in TD-DFT, CIS or other methods:

No map to state XX, you need to solve for more vectors in order to follow this state.

This message usually means you need to increase the number of excited states to be calculated for a proper description of the one you’re interested in. Increase the number N for nstates=N in the route section at higher computational cost. A rule of thumb is to request at least 2 more states than the state of interest. This message can also reflect the fact that during the optimization the energy ordering changes between states, and can also mean that the ground state wave function is unstable, i.e., the energy of the excited state becomes lower than that of the ground state, in this case a single determinant approach is unviable and CAS should be used if the size of the molecule allows it. Excited state optimizations are tricky this way, in some cases the optimization may cross from one PES to another making it hard to know if the resulting geometry corresponds to the state of interest or another. Gaussian recommends changing the step size of the optimization from the default 0.3 Bohr radius to 0.1, but obviously this will make the calculation take longer.

Opt=(MaxStep=10)

If the minimum on the excited state potential energy surface (PES) doesn’t exist, then the excited state is not bound; take for example the first excited state of the H_{2} molecule which doesn’t show a minimum, and therefore the optimized geometry would correspond to both H atoms moving away from each other indefinitely (Figure 2). Nevertheless, a failed optimization doesn’t necessarily means the minimum does not exist and further analysis is required, for instance, checking the gradient is converging to zero while the forces do not.

## Natural Transition Orbitals (NTOs) Gaussian

The canonical molecular orbital depiction of an electronic transition is often a messy business in terms of a ‘*chemical*‘ interpretation of ‘*which electrons*‘ go from ‘*which occupied orbitals*‘ to ‘*which virtual orbitals*‘.

**Natural Transition Orbitals** provide a more intuitive picture of the orbitals, whether mixed or not, involved in any *hole-particle *excitation. This transformation is particularly useful when working with the excited states of molecules with extensively delocalized chromophores or multiple chromophoric sites. The elegance of the NTO method relies on its simplicity: separate unitary transformations are performed on the *occupied *and on the *virtual *set of orbitals in order to get a localized picture of the *transition density matrix*.

[1] R. L. Martin, *J. Chem. Phys*., 2003, DOI:10.1063/1.1558471.

In Gaussian09:

After running a TD-DFT calculation with the keyword TD(Nstates=n) (where n = number of states to be requested) we need to take that result and launch a new calculation for the NTOs but lets take it one step at a time. As an example here’s phenylalanine which was already optimized to a minimum at the B3LYP/6-31G(*d*,*p*) level of theory. If we take that geometry and launch a new calculation with the TD(Nstates=40) in the route section we obtain the UV-Vis spectra and the output looks like this (only the first three states are shown):

Excitation energies and oscillator strengths: Excited State 1: Singlet-A 5.3875 eV 230.13 nm f=0.0015 <S**2>=0.000 42 -> 46 0.17123 42 -> 47 0.12277 43 -> 46 -0.40383 44 -> 45 0.50838 44 -> 47 0.11008 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -554.614073682 Copying the excited state density for this state as the 1-particle RhoCI density. Excited State 2: Singlet-A 5.5137 eV 224.86 nm f=0.0138 <S**2>=0.000 41 -> 45 -0.20800 41 -> 47 0.24015 42 -> 45 0.32656 42 -> 46 0.10906 42 -> 47 -0.24401 43 -> 45 0.20598 43 -> 47 -0.14839 44 -> 45 -0.15344 44 -> 47 0.34182 Excited State 3: Singlet-A 5.9254 eV 209.24 nm f=0.0042 <S**2>=0.000 41 -> 45 0.11844 41 -> 47 -0.12539 42 -> 45 -0.10401 42 -> 47 0.16068 43 -> 45 -0.27532 43 -> 46 -0.11640 43 -> 47 0.16780 44 -> 45 -0.18555 44 -> 46 -0.29184 44 -> 47 0.43124

The oscillator strength is listed on each Excited State as “f” and it is a measure of the probability of that excitation to occur. If we look at the third one for this phenylalanine we see f=0.0042, a very low probability, but aside from that the following list shows what orbital transitions compose that excitation and with what energy, so the first line indicates a transition from orbital 41 (HOMO-3) to orbital 45 (LUMO); there are 10 such transitions composing that excitation, visualizing them all with canonical orbitals is not an intuitive picture, so lets try the NTO approach, we’re going to take excitation #10 for phenylalanine as an example just because it has a higher oscillation strength:

%chk=Excited State 10: Singlet-A 7.1048 eV 174.51 nm f=0.3651 <S**2>=0.000 41 -> 45 0.35347 41 -> 47 0.34685 42 -> 45 0.10215 42 -> 46 0.17248 42 -> 47 0.13523 43 -> 45 -0.26596 43 -> 47 -0.22995 44 -> 46 0.23277

Each set of NTOs for each transition must be calculated separately. First, copy you *filename.chk* file from the TD-DFT result to a new one and name it after the Nth state of interest as shown below (state 10 in this case). **NOTE**: In the route section, replace N with the number of the excitation of interest according to the results in * filename.log*. Run separately for each transition your interested in:

#chk=state10.chk #p B3LYP/6-31G(d,p) Geom=AllCheck Guess=(Read,Only) Density=(Check,Transition=N) Pop=(Minimal,NTO,SaveNTO) 0 1 --blank line--

By requesting SaveNTO, the canonical orbitals in the state10.chk file are replaced with the NTOs for the 10th excitation, this makes it easier to plot since most visualizers just plot whatever set of orbitals they read in the chk file but if they find the canonical MOs then one would need to do some re-processing of them. This is much more straightforward.

Now we format our chk files into fchk with the formchk utility:

formchk -3 filename.chk filename.fchk

formchk -3 state10.chk state10.fchk

If we open filename.fchk (the file where the original TD-DFT calculation is located) with GaussView we can plot all orbitals involved in excited state number ten, those would be seven orbitals from 41 (HOMO-3) to 47 (LUMO+2) as shown in figure 1.

If we now open state10.fchk we see that the numbers at the side of the orbitals are not their energy but their occupation number particular to this state of interest, so we only need to plot those with highest occupations, in our example those are orbitals 44 and 45 (HOMO and LUMO) which have occupations = 0.81186; you may include 43 and 46 (HOMO-1 and LUMO+1, respectively) for a much more complete description (occupations = 0.18223) but we’re still dealing with 4 orbitals instead of 7.

The NTO transition 44 -> 45 is far easier to conceptualize than all the 10 combinations given in the canonical basis from the direct TD-DFT calculation. TD-DFT provides us with the correct transitions, NTOs just paint us a picture more readily available to the chemist mindset.

**NOTE**: for G09 revC and above, the %OldChk option is available, I haven’t personally tried it but using it to specify where the excitations are located and then write the NTOs of interest into a new chk file in the following way, thus eliminating the need of copying the original chk file for each state:

%OldChk=filename.chk

%chk=stateN.chk

NTOs are based on the Natural Hybrid orbitals vision by Löwdin and others, and it is said to be so straightforward that it has been re-discovered from time to time. Be that as it may, the NTO visualization provides a much clearer vision of the excitations occurring during a TD calculation.

Thanks for reading, stay home and stay safe during these harsh days everyone. Please share, rate and comment this and other posts.